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Abstract. We establish the existence of an “Atiyah-Hirzebruch-like” spectral sequence relat-
ing the morphic cohomology groups of a smooth, quasi-projective complex variety to its semi-
topological K-groups. This spectral sequence is compatible with (and, indeed, is built from)
the motivic spectral sequence that relates the motivic cohomology and algebraic K-theory of
varieties, and it is also compatible with the classical Atiyah-Hirzebruch spectral sequence in
algebraic topology. In the second part of this paper, we use this spectral sequence in conjunction
with another computational tool that we introduce — namely, a variation on the integral weight
filtration of the Borel-Moore (singular) homology of complex varieties introduced by H. Gil-
let and C. Soulé – to compute the semi-topological K-theory of a large class of varieties. In
particular, we prove that for curves, surfaces, toric varieties, projective rational three-folds, and
related varieties, the semi-topological K-groups and topological K-groups are isomorphic in
all degrees permitted by cohomological considerations. We also formulate integral conjectures
relating semi-topologicalK-theory to topologicalK-theory analogous to more familiar conjec-
tures (namely, the Quillen-Lichtenbaum and Beilinson-Lichtenbaum Conjectures) concerning
mod-n algebraic K-theory and motivic cohomology. In particular, we prove a local vanishing
result for morphic cohomology which enables us to formulate precisely a conjectural identifica-
tion of morphic cohomology by A. Suslin. Our computations verify that these conjectures hold
for the list of varieties above.
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1. Introduction

The first and third authors have introduced and studied the (singular) semi-topo-
logical K-theory, Ksst

∗ (X), of a complex variety X. Semi-topological K-theory
lies part way between algebraic and topological K-theory in the sense that there
are natural maps

Kq(X) −→ Ksst
q (X) −→ ku−q(Xan), q ≥ 0,

that factor the natural map from the algebraic K-theory K∗(X) of the variety
X to the connective (complex) topological K-theory ku∗(Xan) of its underly-
ing analytic spaceXan. Semi-topologicalK-theory remains extremely difficult to
compute, a fact which is not surprising given that the natural mapK∗(X,Z/n)→
Ksst
∗ (X,Z/n) is an isomorphism of graded rings for any positive integern [16]. On

the other hand, the semi-topological and topological K-theories of a point agree
— i.e., we have isomorphismsKsst

q (Spec C) ∼= ku−q(pt) for all q ≥ 0 — whereas
each group Ki(Spec C) with i > 0 contains an uncountable rational vector space
with little apparent structure. Moreover, for any smooth, quasi-projective complex
variety X, the map of graded rings Ksst

∗ (X) → ku−∗(Xan) becomes an isomor-
phism upon inverting the Bott element β ∈ Ksst

2 (Spec C) ∼= ku−2(pt) ∼= Z [16,
5.8]. We thus foresee the possibility that Ksst

∗ (X) captures much of the complex
algebraic geometry of X but discards the arithmetic data carried by K∗(X).

The purpose of this paper is to introduce computational tools to facilitate the
computation of Ksst

∗ (X). As the interested reader will see below, we study the
issue of when the natural map

Ksst
∗ (X)→ ku−∗(Xan) (1.1)

is an isomorphism (or at least an isomorphism in certain degrees). In general, this
map is rarely an isomorphism in all degrees — for example, ifX has a non-trivial
Griffiths group or if X has cohomology that is not algebraic, then (1.1) is not an
isomorphism. However, we prove (1.1) is an isomorphism of graded rings in many
of the cases in which such an isomorphism is conceivable (e.g., ifX is a projective,
smooth toric variety) — see Theorem 6.18. Such a result has geometric content,
sinceKsst

∗ (X) for a projective varietyX can be viewed as the homotopy groups of
the stabilized mapping space of algebraic morphisms from X to Grassmannians
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viewed as a subspace of the stabilized mapping space of all continuous maps
fromXan to Grassmannians. Thus, our various examples of projective varietiesX
satisfying Ksst

∗ (X) ∼= ku−∗(Xan) reflect the remarkable fact that in these special
cases the subspace of algebraic morphisms inside the space of continuous maps
is a suitable homotopy-theoretic model.

Our main new technique for computing semi-topologicalK-theory is a spectral
sequence

E
p,q

2 = L−qHp−q(X) �⇒ Ksst
−p−q(X)

relating the semi-topologicalK-theory of a smooth complex varietyX to its mor-
phic cohomology L∗H ∗(X). We further show that the natural maps

K∗(X) −→ Ksst
∗ (X) −→ ku−∗(Xan)

can be realized as the maps on abutments of natural maps of spectral sequences
from the motivic spectral sequence (cf. [6], [14], [22], [26], [33]) to the
Atiyah-Hirzebruch spectral sequence [3]. Our construction also applies to provide
maps of spectral sequences involving cohomology and K-theory with arbitrary
coefficients, and we verify that the map from the motivic to the semi-topological
spectral sequences with finite coefficients is an isomorphism. As in the moti-
vic and topological contexts, our semi-topological spectral sequence degenerates
rationally.

Our spectral sequence allows one to translate computations in morphic
cohomology to computations in semi-topologicalK-theory. The other main com-
putational technique developed in this paper is a method for computing morphic
cohomology of smooth varieties — i.e., theE2-terms of the semi-topological spec-
tral sequence. Namely, for smooth varieties, morphic cohomology is naturally dual
to Lawson homology, L∗H∗(X), (cf. [11], [9]) which in turn maps naturally to
(singular) Borel-Moore homology HBM

n (Xan) via a generalized cycle map. We
investigate the behavior of this map with respect to the (integral) weight filtra-
tion on HBM

∗ (Xan) introduced by H. Gillet and C. Soulé [21] refining work of
P. Deligne [8]. We show that the generalized cycle map factors as

LrHn(X)→ W̃−2rH
BM
n (X)→ W−2rH

BM
n (Xan) ⊂ HBM

n (Xan),

whereW∗HBM
n (Xan) denotes the Deligne-Gillet-Soulé filtration and W̃∗HBM

n (X)

is a related construction of our own invention. This factorization facilitates compu-
tations, for it is much easier to establish isomorphisms (relating Lawson homology
and W̃∗HBM

∗ (X)) than injections.
As mentioned above, semi-topologicalK-theory with finite coefficients is nat-

urally isomorphic to algebraicK-theory with finite coefficients. There are various
important conjectures for algebraicK-theory with finite coefficients which imply
computational results. In this paper we also show that these conjectures have nat-
ural integral generalizations which seem somewhat plausible. In particular, we
provide a local (for the Zariski topology) vanishing result which enables us to
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formulate precisely a conjectured identification due to A. Suslin of morphic coho-
mology which parallels a well known conjecture of Beilinson for motivic coho-
mology with finite coefficients. As we see, this has interesting computational
consequences for semi-topological K-theory.

The approach we take in this paper is a continuation of [16] which established
that the Chern character from semi-topological K-theory of a smooth variety to
rational morphic cohomology is a rational isomorphism. The key tool of that
paper was a recognition principle inspired by earlier work of V. Voevodsky which
applies to the singular topological complex associated to a contravariant functor
on complex varieties. As seen in [16], not only semi-topological K-theory but
also Lawson homology and morphic cohomology can be formulated using such
singular topological complexes. In this paper, we repeatedly use this formulation
and the recognition principle of [16, 2.7] to enable computations.

We conclude this introduction by highlighting various results to be found in
this paper.

Sections 2 through 4 concern the construction and properties of the semi-
topological spectral sequence. Specifically, applying the technology of singular
semi-topological complexes developed in [16] to the tower of spectra considered
in [14], we establish in Section 2 the existence of a semi-topological spectral
sequence relating morphic cohomology and semi-topological K-theory:

Theorem 1.2 (see Theorem 2.10). For any smooth, quasi-projective complex
variety X and abelian group A, there is a strongly convergent spectral sequence
of the form

E
p,q

2 = L−qHp−q(X;A) �⇒ Ksst
−p−q(X;A),

which is natural for morphisms of smooth varieties.

In Section 3, we prove this spectral sequence is compatible with both the
motivic spectral sequence (connecting motivic cohomology and algebraicK-the-
ory) and the classical Atiyah-Hirzebruch spectral sequence (connecting singular
cohomology and topological K-theory). Specifically, we prove:

Theorem 1.3 (see Theorem 3.6). For any smooth, quasi-projective complex
varietyX and any abelian groupA, there are natural maps of strongly convergent
spectral sequences

E
p,q

2 (alg) = Hp−q
M (X,A(−q)) �⇒ K

alg
−p−q(X;A)



�

E
p,q

2 (sst) = L−qHp−q(X;A) �⇒ Ksst
−p−q(X;A)



�

E
p,q

2 (top) = Hp−q(Xan;A) �⇒ kup+q(Xan;A)
inducing the usual maps on both E2-terms and abutments.
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In Section 4, we build upon the arguments of [16] to prove the semi-topological
spectral sequence degenerates rationally, as expected:

Theorem 1.4 (see Theorem 4.2). For a smooth, quasi-projective complex variety
X, the semi-topological spectral sequence

L−qHp−q(X) �⇒ Ksst
−p−q(X)

degenerates rationally, and moreover this degeneration is induced by the semi-
topological Chern character.

Sections 5 and 6 concern computations in semi-topological K-theory. The
primary tools used in these computations are the semi-topological spectral se-
quence and a refinement of the integral weight filtration of singular (Borel-Moore)
homology defined by Gillet-Soulé [21]. The latter refers to functors W̃tH

BM
n (−)

we construct on the category of quasi-projective complex varieties that map sur-
jectively to the weight filtration WtH

BM
n of Borel-Moore homology considered

by Gillet-Soulé. In Section 5 we show the functors W̃tH
BM
n (−) enjoy numerous

desirable properties, including a version of the projective bundle formula (see
Theorem 5.14), and that they factor the map from Lawson homology to Borel-
Moore homology in the following sense:

Theorem 1.5 (see Theorem 5.12). For any quasi-projective complex variety U ,
the map from Lawson homology to Borel-Moore homology factors as

LtHn(U)→ W̃−2tH
BM
n (U)→ HBM

n (Uan), for all n, t ∈ Z.

Moreover, the map LtHn(U)→ W̃−2tH
BM
n (U) is covariantly natural for proper

morphisms and contravariantly natural for open immersions, for all t, n ∈ Z.
Also, the map LtH∗ → W̃−2tH

BM
∗ is compatible with localization sequences.

From this we deduce immediately that the image of the generalized cycle map
from Lawson homology LtH∗ to Borel-Moore homology HBM

∗ has weight at
most −2t :

Corollary 1.6 (see Corollary 5.13). For any quasi-projective complex varietyU ,
the image of the canonical mapLtHn(U)→ HBM

n (Uan) lies in the part of weight
at most −2t , W−2tH

BM
n (Uan) ⊂ HBM

n (Uan), of Borel-Moore homology.

In Section 6 we apply Theorem 1.5 and the semi-topological spectral sequence
(Theorem 1.2) to compute the semi-topological K-theory for a certain class of
varieties. Coupled with a result on surfaces proved in Section 3, we obtain the
following theorem:

Theorem 1.7 (see Theorem 7.14 and Proposition 6.19). Let X be one of the
following complex varieties:
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(1) A smooth quasi-projective curve.
(2) A smooth quasi-projective surface.
(3) A smooth projective rational three-fold.
(4) A smooth projective rational four-fold
(5) A smooth quasi-projective linear variety (e.g., a smooth quasi-projective

toric variety).
(6) A smooth toric fibration over a variety of type (1), (3), or (5) or over a

smooth, quasi-projective surface having a smooth compactification such
that all of H 2 is algebraic.

Then the natural mapKsst
n (X)→ ku−n(Xan) is an isomorphism forn ≥ dim(X)−

1 and a monomorphism for n = dim(X)− 2.

In the final section, we present a few conjectures which can be seen as integral
forms of familiar conjectures in algebraicK-theory. Moreover, in Theorem 7.3 we
prove a local vanishing result for morphic cohomology which enables us to pre-
cisely formulate a conjectured identification of morphic cohomology suggested
by Suslin.

In a forthcoming paper, we intend to extend many of the results of this paper
to real algebraic varieties, using the real semi-topological K-theory of [18].

We thank Andrei Suslin for many helpful conversations.

2. Construction of the semi-topological spectral sequence

The main result of [14] establishes the existence of a spectral sequence converg-
ing to the algebraic K-groups of a smooth, quasi-projective k-variety X whose
E2- terms are the motivic cohomology groups of X. In this section, we define a
semi-topological analogue of this spectral sequence (when k = C) and show that
it receives a natural map from the motivic spectral sequence of [14].

We begin this section by briefly summarizing the construction of the motivic
spectral sequence.

For the purposes of this paper, a spectrum means a prespectrum of Kan com-
plexes (i.e., a sequence of Kan complexesX0, X1, . . . joined by “bonding maps”
Xi → �Xi+1), an�-spectrum is what is sometimes called a “weak”�-spectrum
(i.e., the bonding maps are homotopy equivalences), and a map of spectra is a
strict map (i.e., we require maps to commute strictly with the bonding maps). An
�-spectrum X is n-connected, for some integer n, if Xi is (n+ i)-connected for
each i ≥ 0.

For any field k, Friedlander and Suslin construct contravariant functors K(q)

and M(q), for each q ≥ 0, from Sm/k to the category of (−1)-connected �-
spectra, together with a family of sequences of natural transformations of the
form

K(q+1)(X)→ K(q)(X)→M(q)(X),
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for each q ≥ 0. (Thus, K(q)(X) consists of a sequence of spaces K(q)(X)0,K(q)

(X)1, . . . together with bonding maps, and similarly for M(q)(X).) These func-
tors and natural transformations are easily seen to extend to all schemes over k
and to satisfy the following properties:

(1) All of the maps are natural on the category Sch/k.
(2) For any X ∈ Sch/k and each q ≥ 0, the composition

K(q+1)(X)→ K(q)(X)→M(q)(X)

is the constant map.
(3) If X is smooth, then the sequence

K(q+1)(X)→ K(q)(X)→M(q)(X)

is a weak homotopy fibration sequence of (−1)-connected �-spectra.
(4) There is a natural map K(X)→ K(0)(X) defined for X ∈ Sch/k which is

a weak homotopy equivalence wheneverX is smooth. Here, K(X) denotes
the usual K-theory �-spectrum of X as defined in [37].

(5) For X smooth and any abelian group A, we have natural isomorphisms

πnM(q)(X;A) ∼= H 2q−n
M (X,A(q)),

for all n, q ≥ 0, where H ∗M(X,A(∗)) denotes the motivic cohomology
groups of X as defined, for example, in [15].

(6) For X smooth of dimension d, we have πnK(q)(X) = 0 for q > n+ d.

To construct the motivic spectral sequence for a smooth variety X, one sets

D
p,q

2 = π−p−qK(−q)(X) and E
p,q

2 = π−p−qM(−q).

The above properties imply that theseD2- andE2-terms form an exact couple, and
moreover we have a natural, strongly convergent spectral sequence of the form

E
p,q

2 = Hp−q
M (X,Z(−q)) �⇒ K−p−q(X). (2.1)

We obtain the semi-topological version of this spectral sequence by forming
the semi-topological analogues of the functors K(q) and M(q).

Notation 2.2. We write CW for the category of spaces homeomorphic to finite
dimensional CW-complexes endowed with the usual topology given by open sub-
spaces and ε : CW → (Sch/C)Zar for the morphism of sites given by the functor
U 	→ Uan taking a complex variety to its associated analytic space and morphisms
of complex varieties to their associated continuous maps. If F is a presheaf of
sets, simplicial sets, or spectra on Sch/C, we let ε#F denote the presheaf on CW
induced by the usual Kan extension formula

ε#F(T ) = lim−→ T→UanF(U).
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Here, the limit is indexed by the opposite of the category (V arT )C, whose objects
are continuous maps T → Uan and in which a morphism from T → Uan to
T → V an is a morphism of varieties U → V causing the evident triangle to
commute.

Frequently, we suppress the notation ε#, so that given a presheaf F defined on
Sch/C and a space T , we write simply F(T ) for ε#F(T ). Given a schemeX and
a space T we also write F(X × T ) for ε#(F(X ×−))(T ).

For any presheaf of simplicial sets E on Sch/C, we write E sst for the presheaf
of simplicial sets given by

X 	→ diag(d 	→ E(X ×�d
top)).

If E is a presheaf of�-spectra on Sch/C, we write E sst for the presheaf of spectra
whose value at X is the spectrum defined by

E sst (X)i = Ex∞ diag(d 	→ E(X ×�d
top)

i),

for i ≥ 0, where Ex∞ is the usual functor taking a general simplicial set to a
homotopy equivalent Kan complex. The bonding maps for the spectrum E sst (X)
are defined by the composition of the canonical maps

Ex∞ diag(d 	→ E(X ×�d
top)

i)→ Ex∞ diag(d 	→ �E(X ×�d
top)

i+1)

→ Ex∞� diag(d 	→ E(X ×�d
top)

i+1)

→ �Ex∞ diag(d 	→ E(X ×�d
top)

i+1)(2.3)

Remark 2.4.

(1) Observe that if E takes values in (−1)-connected �-spectra, then E sst is an
�-spectrum (and is (−1)-connected), since in this case the composition of
the last two maps of (2.3) is a homotopy equivalence by [22, 7.1] and the
first map in (2.3) is a homotopy equivalence in general.

(2) There is a natural transformation id → ()sst (given by the augmentation of
the cosimplicial space�•top) from the identity functor on presheaves of sim-
plicial sets (or spectra) to the functor sending a presheaf E to the presheaf
E sst .

Example 2.5. Let K be the (connective) algebraic K-theory spectrum as defined
for example in [37]. Then we call Ksst the functor of (singular) semi-topological
K-theory. That is, Ksst (X) is the �-spectrum with 0-th space

Ksst (X)0 = Ex∞ diag(d 	→ K(X ×�d
top)

0)

We build the semi-topological spectral sequence by building on the construc-
tion of the motivic spectral sequence, essentially by applying the functor E 	→ E sst
to the functors K(q) and M(q). The main technical result needed to facilitate this
construction is the following one, which represents a slight generalization of a
result proved by the first and third authors in [16]:
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Theorem 2.6. (See [16, 2.6]) Let θ : F → G be a natural transformation of con-
travariant functors defined on Sch/C and taking values in the category of pointed
Kan complexes. Assume additionally that for each X ∈ Sch/C, F(X) and G(X)
are homotopy commutative group-like H -spaces (i.e., pointed Kan complexes
equipped with pairings that satisfy the axioms of an abelian group up to homot-
opy) and that for each morphism X → Y in Sch/C, the maps F(Y ) → F(X)

and G(Y) → G(X) are H -maps (i.e., they commute with the pairings up to
homotopy). Moreover, assume that the induced map θ : π0F(−) → π0G(−) is
a homomorphism of abelian groups. If the h-sheafification of the natural trans-
formation of abelian groups θ : πqF (−) → πqG(−) is an isomorphism for all
q ≥ 0, then

diag(d 	→ F(�d
top))→ diag(d 	→ G(�d

top))

is a homotopy equivalence.

Proof. In [16, 2.6], this result is proven under the assumption that θ is actually a
natural transformation of functors taking values in H -spaces, by which is meant
θ : F(X) → G(X) is an H -map for all X ∈ Sch/C. However, the proof actu-
ally only needs the slightly weaker assumptions given here. Indeed, under these
assumptions, we obtain a map of convergent spectral sequences from

πp|d 	→ πqF (�
d
top)| �⇒ πp+qF (�•top)

to
πp|d 	→ πqG(�

d
top)| �⇒ πp+qG(�•top)

which is an isomorphism on E2-terms by [16, 2.3]. ��
Corollary 2.7. Suppose

F → G→ H

is a sequence of natural transformations of presheaves of �-spectra defined on
Sch/C. Assume H is N -connected for some (possibly negative) integer N . Sup-
pose that for eachU ∈ Sch/C the composition ofF(U)→ G(U)→ H(U) is the
constant map and for each U ∈ Sm/C the sequence F(U)→ G(U)→ H(U)

is a weak homotopy fibration sequence of spectra. Then for any X ∈ Sm/C, the
sequence

F sst (X)→ Gsst (X)→ Hsst (X)

is a weak homotopy fibration sequence of �-spectra.

Proof. Fix an X ∈ Sm/C. For any U ∈ Sch/C, define L(U) to be the
homotopy fiber of G(U × X) → H(U × X) so that L is also a presheaf of
�-spectra on Sch/C. By our hypothesis, there is a natural transformation of
presheaves F(− × X) → L on Sch/C which is a weak homotopy equivalence
on each U ∈ Sm/C. Observe that for all i, F(U × X)i and L(U)i are clearly
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homotopy commutative group-like H -spaces, and thus Theorem 2.6 applies to
show diagF(�•top × X)i → diagL(�•top)

i is a homotopy equivalence. Hence
F sst (X)→ Lsst (Spec C) is a weak homotopy equivalence of spectra.

For each i ≥ 0, the sequence

diagL(�•top)
i → diagG(�•top ×X)i → diagH(�•top ×X)i (2.8)

is obtained by taking diagonals of a degree-wise homotopy fibration sequence
of bisimplicial sets. For i > N + 1, the Kan complex H(�d

top × X)i is simply
connected for each d, and thus by [7, B.4] we have that (2.8) is a homotopy
fibration sequence of Kan complexes for such i. Consequently Lsst (Spec C) =
diagL(�•top) is weakly homotopy equivalent to the homotopy fiber ofGsst (X)→
Hsst (X). ��
Theorem 2.9. If X is a smooth, quasi-projective complex variety, then for each
q ≥ 0, the sequence of maps

K(q+1),sst (X)→ K(q),sst (X)→M(q),sst (X)

is a weak homotopy fibration sequence of (−1)-connected �-spectra. Moreover,
we have πnK(q),sst (X) = 0 for q > n+ dim(X).

Proof. By Corollary 2.7, the displayed sequence is a weak homotopy fibration
sequence of �-spectra, and each is (−1)-connected by construction.

Recall that for any smooth F -variety U , where F is any ground field, we have
πnK(q)(U) = 0 whenever q > n+ dim(U). In particular, for any field extension
F/C, we have πnK(q)(X×SpecF)=0 for q>n+dim(X). Moreover, for each n,
the presheaf

Gn : U 	→ πnK(q)(X × U)
defines a homotopy invariant pseudo-pretheory on Sm/C (cf. [14, 11.4]), and
hence for any smooth, complex variety U and closed point u ∈ U , the map
Gn(Spec OU,u) → Gn(SpecF) is an injection, where F denotes the field of
fractions of OU,u. Hence, if q > n + dim(X), the Zariski sheafification of Gn

vanishes on smooth schemes and thus, by resolution of singularities and Theorem
2.6, we have that d 	→ πnK(q)(X × �d

top) is contractible. An application of the
Bousfield-Friedlander spectral sequence [7, B.5]

πs |d 	→ πtK(q)(X ×�d
top)| �⇒ πs+tK(q)(X ×�•top)

completes the proof. ��
We can now immediately conclude the main theorem of this section:

Theorem 2.10. For any smooth, quasi-projective complex variety X and abelian
group A, there is a strongly convergent spectral sequence of the form

E
p,q

2 = L−qHp−q(X;A) �⇒ Ksst
−p−q(X;A),

which is natural for morphisms of smooth varieties.
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Proof. By settingEp,q2 = π−p−q(M(−q),sst , A) andDp,q

2 = π−p−q(K(−q),sst , A),
we obtain a strongly convergent spectral sequence

E
p,q

2 �⇒ π−p−qK(0),sst (X;A).
Since K(X × −) → K(0)(X × −) is a homotopy equivalence on smooth varie-
ties, we have K(0),sst (X) is homotopy equivalent to Ksst (X) by Theorem 2.6. It
remains to identify the E2-terms. This is done in [16, 3.5]. ��
Proposition 2.11. If X is a smooth, quasi-projective complex variety and A is
an abelian group, there is a natural map of spectral sequences from the motivic
spectral sequence

E
p,q

2 = Hp−q
M (X,A(−q)) �⇒ K−p−q(X,A)

to the semi-topological spectral sequence of Theorem 2.10 such that the map on
abutments is the canonical map from algebraicK-theory to (singular) semi-topo-
logical K-theory. Moreover, if A is a finite abelian group, then this map is an
isomorphism of spectral sequences.

Proof. The map of spectral sequences is obtained by applying the natural trans-
formation of Remark 2.4 to the tower of spectra defining the motivic spectral
sequence. If A is finite, the maps of E2-terms are isomorphisms, since motivic
and morphic cohomology agree for finite coefficients by [34]. ��

3. Comparison of spectral sequences

In this section, we define a map from the semi-topological spectral sequence of
Theorem 2.10 to the usual Atiyah-Hirzebruch spectral sequence. We do this by
showing that a certain “topological realization” functor (that presumably is closely
related to the one considered by Morel andVoevodsky in [30]) applied to the tower
defining the motivic spectral sequence gives a model for the Postnikov tower of
bu, and that there is a natural transformation from the semi-topological tower of
Theorem 2.9 to this topological tower.

Notation 3.1. Suppose E is a presheaf of simplicial sets on Sch/C. Define E top to
be the presheaf of simplicial sets defined on CW by the formula

D 	→ Homs.sets(Sing(D),Ex∞ diag E(�•top)),
If E is a presheaf of spectra on Sch/C, define E top to be the presheaf of spectra

on CW defined by

E top(D)i = Homs.sets(Sing(D),Ex∞ diag E(�•top)i),
with the bonding maps maps given in the usual manner.
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We then have the following result:

Lemma 3.2. If E is a presheaf of simplicial sets (resp., spectra) on Sch/C, then
for any X ∈ Sch/C, there is a map of simplicial sets (resp., spectra)

E sst (X)→ E top(Xan)

natural in both X and E and satisfying the following properties.

(1) If E is the presheaf of simplicial sets defined by Hom(− × �•, Y ) for some
variety Y , then E sst (X)→ E top(Xan) fits into the commutative square

E sst (X) −−−→ E top(Xan)
�



�



Hom(X ×�•top, Y ) −−−→ Homs.set (Sing(Xan),Sing(Y an))

in which the vertical maps are induced by the “projection” maps�d×�d
top →

�d
top. Note that these vertical maps are homology equivalences by [17, 1.2].

(2) For any E , the map

E sst (Spec C)→ E top(pt)
is a weak homotopy equivalence.

Proof. We construct the natural transformation as follows (for E a presheaf of sim-
plicial sets): Let X be a scheme. The map we want corresponds, by adjointness,
to the map of simplicial sets

E sst (X)× Sing(Xan)→ Ex∞ diag E(�•top)

which we obtain by composing the natural map diag E(�•top)→ Ex∞ diag E(�•top)
with the map sending a d-simplex

((f : �d
top → Uan, α ∈ Ed(X × U)), g : �d

top → Xan)

of E sst (X)× Sing(Xan) to the d-simplex

((g, f ) : �d
top → Xan × Uan, α ∈ Ed(X × U))

of diag E(�•top). For a presheaf of spectra, we use this map on each level. The two
required properties are immediate from the definitions. ��

We apply the map of Lemma 3.2 when E = K(q) or E =M(q) for q ≥ 0. In
the case q = 0, we obtain the “standard” map from semi-topologicalK-theory to
topological K-theory.
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Proposition 3.3. Let K denote the functor from Sch/C to spectra defining alge-
braicK-theory. Then for any T ∈ CW , the spectrum Ktop(T ) is naturally homot-
opy equivalent to usual connective topologicalK-theory of T . Moreover, for any
variety X, the map

Ksst (X)→ Ktop(Xan)

of Lemma 3.2 is homotopic (on the level of total spaces) to the map constructed
in [17, 2.0].

Proof. That Ktop(T ) gives the connective topologicalK-theory of T follows from
the fact that K(�•top) is homotopy equivalent to the spectrum bu, a fact which is
established in [17].

The map from semi-topological K-theory to topological K-theory defined in
[17] is constructed by using the following model for the functor Ksst : Let Grass
denote the ind-variety parameterizing the finite dimensional quotients of the count-
ably infinite dimensional vector space C

∞. Then the simplicial set Hom(X ×
�•top,Grass) admits an action by a certain E∞ operad, and hence one obtains an
associated spectrum S Hom(X×�•top,Grass). It is proven in [17, 1.3] that there is
a natural chain of homotopy equivalences joining the functor Ksst (−) (as we have
defined it in this paper) to the functor S Hom(− × �•top,Grass). Similarly, it is
proven in [29] that a model for connective topological K-theory of T is given by
taking the spectrum associated to the space Hom(T ,Grassan) equipped with the
evident action by the linear isometries operad. Equivalently, the connective topo-
logicalK-theory of T can be given by the spectrum associated to the simplicial set
Homs.sets(Sing(T ),Sing(Grassan)). The map from semi-topologicalK-theory to
topological K-theory defined in [17] is induced by the canonical maps

Hom(X×�d
top,Grass)→ Homs.sets(Sing(X)×�[d],Sing(Grassan)), d ≥ 0.

This is the bottom line of a diagram of the type in Lemma 3.2 (1), while the
corresponding top line induces (after homotopy group completion) a model for
the map defined in this paper. Applying the homotopy group completion functor
makes the vertical maps homotopy equivalences, proving that the map of [17] is
naturally homotopy equivalent to that defined in this paper. ��
Theorem 3.4. For each q ≥ 0 and D ∈ CW , the sequence

K(q+1),top(D)→ K(q),top(D)→M(q),top(D)

is a weak homotopy fibration sequence of�-spectra. Moreover, there are natural
isomorphisms

πnM(q),top(D) ∼= H 2q−n(D,Z)

and
πnK(0),top(D) ∼= ku−n(D),
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for n ∈ Z, so that we have a convergent spectral sequence of the form

E
p,q

2 (D) = Hp−q(D) �⇒ kup+q(D).

This spectral sequence is isomorphic to the classical Atiyah-Hirzebruch spectral
sequence.

Proof. Since Hom(Sing(D),−) preserves weak homotopy fibration sequences of
spectra, it suffices to prove that

K(q+1),top(pt)→ K(q),top(pt)→M(q),top(pt) (3.5)

is a weak homotopy fibration sequence for all q ≥ 0, that K(0),top(pt) is the usual
spectrum bu representing connective topological K-theory, that K(q),top(pt) is
(2q−1)-connected, that M(q),top(pt) is aK(Z, 2q), and that the map π2qK(q),top

(pt) → π2qM(q),top(pt) = Z is an isomorphism. For these conditions ensure
that the collection of fibration sequences (3.5) coincide with those associated to
the Postnikov tower of bu, and the classical Atiyah-Hirzebruch spectral sequence
can be constructed by applying Hom(Sing(D),−) to this tower.

The claim that (3.5) is a weak homotopy fibration sequence of spectra follows
from Theorem 2.9 using Lemma 3.2 (2). The fact that K(0),top(pt) is homotopy
equivalent to bu is given in the proof of Proposition 3.3.M(q),top(pt) is aK(Z, 2q)
since it is homotopy equivalent to (the singular complex of) the quotient topo-
logical abelian group C0(P

q)+/C0(P
q−1)+ and hence to the infinite symmetric

product of the 2q-sphere. The remaining desired properties now follow. Indeed,
if πnK(q),top(pt) did not vanish for a given q and n < 2q, then πnK(t),top(pt)

would also not vanish for all t ≥ q, since πnM(t),top(pt) = 0 for all such t and
since we have established the fibration sequences (3.5). This would contradict the
vanishing of πnK(t),top(pt) for t > n, and hence K(q),top(pt) must be (2q − 1)-
connected. The fact that the map π2qK(q),top(pt)→ π2qM(q),top(pt) = Z is an
isomorphism now follows, using the long exact sequence associated to (3.5). ��

We have now proven all the ingredients for the main result of this section.

Theorem 3.6. For any smooth, quasi-projective complex variety X and any abe-
lian group A, there are natural maps of strongly convergent spectral sequences

E
p,q

2 (alg) = Hp−q
M (X,A(−q)) �⇒ K

alg
−p−q(X;A)



�

E
p,q

2 (sst) = L−qHp−q(X;A) �⇒ Ksst
−p−q(X;A)



�

E
p,q

2 (top) = Hp−q(Xan;A) �⇒ kup+q(Xan;A)
inducing the usual maps on both E2-terms and abutments.
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Proof. The top vertical map is the one of Proposition 2.11, the bottom one is
induced by the map of Lemma 3.2 using the identification of Theorem 3.4. ��

As a first application of this comparison of spectral sequences we give a com-
putation of the semi-topological K-theory of surfaces:

Theorem 3.7. For any smooth quasi-projective surface S and abelian group A,
the natural map

Ksst
n (S,A)→ ku−n(San, A)

is an isomorphism for n ≥ 1 and a monomorphism for n = 0.

Proof. We claim that for any r ≥ 2, the comparison mapEp,qr (sst)→ E
p,q
r (top)

is an isomorphism for p + q < 0 and a monomorphism for p + q = 0. If r = 2,
then in the case q = 0, these assertions are evident, in the case q = −1, they fol-
low from a theorem of Friedlander and Lawson [12, 9.3], and in the case q ≤ −2,
they follow from duality relating morphic cohomology and Lawson homology
[11] and the fact that L0Hn(S,A) ∼= HBM

n (San, A) for all n.
Proceed by induction on r , using the commutative diagram

E
p−r,q+r−1
r (sst) −−−→ E

p,q
r (sst) −−−→ E

p+r,q−r+1
r (sst)



�



�



�

E
p−r,q+r−1
r (top) −−−→ E

p,q
r (top) −−−→ E

p+r,q−r+1
r (top)

formed by theEr -differentials of the spectral sequences. Ifp+q ≤ 0, then the left
vertical map in this diagram is an isomorphism and the middle vertical map is a
monomorphism, and hence a diagram chase shows that Ep,qr+1(sst)→ E

p,q

r+1(top)

is a monomorphism. If p + q < 0, then we have in addition that the middle map
is an isomorphism and the right map is a monomorphism, and another diagram
chase shows that Ep,qr+1(sst)→ E

p,q

r+1(top) is surjective.
In particular, we conclude that the maps Ep,q∞ (sst)→ E

p,q
∞ (top) are isomor-

phisms for p + q < 0 and monomorphisms for p + q = 0. The result follows.��

4. Rational degeneration

In this section we prove that, just as with the motivic and topological spectral
sequences, the semi-topological spectral sequence degenerates rationally. That is,
we show that the map Dp,q

2 (sst)Q → D
p−1,q+1
2 (sst)Q is injective and, equiva-

lently, the mapEp,q2 (sst)Q→ D
p+2,q−1
2 (sst)Q is the zero map, for all p, q. Here,

for an abelian groupA, we setAQ = A⊗Z Q. Consequently, we have the rational
isomorphism

Ksst
n (X)Q ∼=

⊕

q≥0

LqH 2q−n(X;Q)
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valid for any smooth, complex variety X. Such an isomorphism was first estab-
lished in [16], where it is proven that the Chern character map determines a ring
isomorphism of this form. We prove here that the rational degeneration of the spec-
tral sequence corresponds to the Chern character isomorphism, in a sense made
precise below. Moreover, since the semi-topological Chern character is compati-
ble with the algebraic and topological Chern characters by [16, 4.7], this rational
splitting is compatible with the rational splitting of the motivic and topological
spectral sequences.

Remark 4.1. The motivic spectral sequence is shown to degenerate rationally by
establishing the existence of Adams operations, ψk for k ≥ 1, on the D2 and E2

terms of the motivic spectral sequence and then proving thatDp,q

2 ⊗Q is a direct
sum of summands having weight at least −q while Ep,q2 ⊗ Q is of pure weight
−q. (An element has weight t if it is an eigenvector with eigenvalue kt for the
operator ψk, for any k ≥ 1.) Thus the map Ep,q2 → D

p+2,q−1
2 must be the zero

map rationally. Presumably, one could define Adams operations on Ksst
n (X) as

well as the E2- and D2-terms of the semi-topological spectral sequence, but we
have not attempted to do so in this paper.

Recall that the semi-topological Chern character map

chsst :
⊕

n

Ksst
n (X)→

⊕

n,t

LtH 2t−n(X,Q),

defined in [16, §4], is a natural transformation of graded-ring-valued functors on
the category of smooth varieties, and it induces a rational isomorphism.

Theorem 4.2. SupposeX is a smooth, quasi-projective complex variety. Then the
composition of

πnK(t),sst (X)Q→ Ksst
n (X)Q

chsstn→
⊕

s≥0

LsH 2s−n(X,Q) �
⊕

s≥t
LsH 2s−n(X,Q)

(4.3)

is an isomorphism for all t, n ≥ 0. Consequently, the semi-topological spectral
sequence

L−qHp−q(X) �⇒ Ksst
−p−q(X)

degenerates rationally.

Proof. For n = 0, the sequence of maps (4.3) is a quotient of the corresponding
algebraic sequence

π0K(t)(X)Q→ K0(X)Q
ch→
⊕

s≥0

H 2s
M(X,Q(s)) �

⊕

s≥t
H 2s

M(X,Q(s)). (4.4)
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In fact, if F denotes π0K(t)(−)Q,K0(−)Q, orH 2s
M(−,Q(s)), and F sst denotes its

semi-topological counterpart, we have a natural exact sequence
⊕

(C,c0,c1)

F (X × C)→ F(X)→ F sst (X)→ 0

where (C, c0, c1) ranges over the collection of smooth, connected complex curves
C with specified closed points c0, c1. The proof of [16, 1.10] shows that the
composition of (4.4) is an isomorphism, and thus the composition of (4.3) is an
isomorphism for n = 0.

To establish the result for all n > 0, note that since πnK(t),sst (X) = 0 and
LtH 2n−t (X) = 0 for t � n, it suffices by using descending induction on t to
establish that the sequence

0→ πnK(t+1),sst (X)Q→ πnK(t),sst (X)Q
chsstn,t→ LtH 2t−n(X,Q)→ 0

is exact. If n > 0, then for all s the map chsstn,s is a non-zero rational multiple of
the Segre class map (defined in [16, 4.1])

ssstn,s : Ksst
n (X)Q→ LsH 2s−n(X,Q),

and thus it suffices to prove

0→ πnK(t+1),sst (X)Q→ πnK(t),sst (X)Q
ssstn,t→LtH 2t−n(X,Q)→ 0

is exact for all n, t > 0. (Observe that when t = 0, we have πnK(1),sst (X)Q →
πnK(0),sst (X)Q is an isomorphism and L0H 2t−n(X,Q) = 0 for all n > 0, and so
exactness in this case is clear.) The exactness of this sequence will hold provided
we show the composition of

πnK(t),sst (X)Q→ Ksst
n (X)Q

Seg→
⊕

s≥1

LsH 2s−n(X,Q)

→
⊕

s≥t
LsH 2s−n(X,Q) (4.5)

is an isomorphism, where Seg denotes the total Segre class map, given by Seg =
sn,1 + sn,2 + · · · .

To establish such an isomorphism, we will use Theorem 2.6 and the fact that
the algebraic version of this result holds — namely, the composition of

πnK(t)(X)Q→ Kn(X)Q
Seg→
⊕

s≥1

H 2s−n
M (X,Q(s))→

⊕

s≥t
H 2s−n

M (X,Q(s))

is an isomorphism for n, t > 0 as shown in the proof of [16, 1.10]. To employ
Theorem 2.6, we must realize the map

πnK(t)(X)Q→
⊕

s≥t
LsH 2s−n

M (X,Q(s))
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as coming from a natural transformation of spaces. In [16, §1], it is shown that
the total Segre class map arises as a natural transformation of functors

Seg : Kgeom(−)→ Hmult (−),
where Kgeom(−) is a functor defining the algebraic K-theory of varieties and
Hmult (−) is a certain functor that fits into a natural homotopy fibration sequence
of the form

Hom(−×�•, C0(P
∞))+1 → Hmult (−)→ Hom(−,Z),

Moreover, there is a natural homotopy equivalence

Hom(−×�•, C0(P
∞))+1

∼→ lim−→ N

N
∏

t=1

HM,naive(−,Z(t))

where

HM,naive(−,Z(t)) = Hom(−×�•, C0(P
t ))+/Hom(−×�•, C0(P

t−1))+

is a functor from Sch/C to simplicial abelian groups whose homotopy groups are
naturally isomorphic to the motivic groups for smooth varieties. A slight compli-
cation arises in that the functor Kgeom(X) is not the same model for the algebraic
K-theory space K(X) of a variety X used in this paper. (Specifically, Kgeom(X)

is given by the homotopy theoretic group completion of Hom(X × �•,Grass)
where Grass parameterizes all finite dimensional subspaces of C

∞.) However,
the functors K and Kgeom are related by a “zig-zag” chain of natural maps that are
weak homotopy equivalences on smooth varieties [23, 3.3], [19, 6.8]. Therefore,
by taking homotopy pullbacks as necessary, we may form a sequence of natural
maps

· · · → K(t+1)
geom → K(t)

geom→ · · · → K(0)
geom = Kgeom

such that K(t)
geom, for all t , is related to K(t) via a zig-zag chain of natural maps that

are weak homotopy equivalences on smooth varieties. In particular, by Theorem
2.6, the spaces K(t)(X × �•top) and K(t)

geom(X × �•top) are homotopy equivalent,
and it suffices to consider the map K(t)

geom → Hmult , defined to be the composi-

tion of K(t)
geom → Kgeom

Seg→Hmult . Since the composition of Kgeom → Hmult →
Hom(−,Z) is the rank map, the composition K(t)

geom → Hmult → Hom(−,Z) is
the constant map with value 0 (since we are assuming t > 0). Therefore, there is
a natural map from K(t)

geom to the homotopy fiber of Hmult → Hom(−,Z) over 0.
Let us denote this homotopy fiber as F0 — it is a functor from Sch/C to simplicial
sets and there exists a natural zig-zag of weak homotopy equivalences joining it
to the functor lim−→ N

∏N
t=1 HM,naive(−,Z(t)). By taking homotopy pullback as

necessary, we can thus form the diagram of natural transformations

K(t)
geom

∼←−G→ lim−→ N

∏N
s=1 HM,naive(−,Q(s))→ lim−→ N

∏N
s=t HM,naive(−,Q(s)),

for a suitable functor G from Sch/C to Kan complexes.
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As mentioned above, the map

G(X)→ lim−→
N

N
∏

s=q
HM,naive(X,Q(s))

is a rational homotopy equivalence for any smooth varietyX as shown in the proof
of [16, 1.10]. On π0 groups, this map is isomorphic to the composition of

π0K(t)(X)→ K0(X)
Seg→
(

{1} ×
⊕

s≥q
CHs(X)Q

)×
,

where the target is a group under intersection of cycles (i.e., cup product) —
in particular, this map is a homomorphism. Finally, both G and lim−→ N

∏N
s=q

HM,naive(X,Q(s)) take values in H -spaces, where the H -space structure on the
latter is given by cup product for motivic cohomology. Thus, Theorem 2.6 applies
to give that

G(X ×�•top)→ lim−→ N

N
∏

s=q
HM,naive(X ×�•top,Q(s))

is a rational homotopy equivalence, and hence the composition of (4.5) is an
isomorphism. ��

5. Refined cycle map using weight filtrations

In this section we demonstrate that the canonical map from Lawson homology to
integral Borel-Moore homology

LtH∗(U)→ HBM
∗ (Uan)

factors through a refined homological invariant W̃−2tH
BM
∗ (Uan) that is closely

related to the weight filtrationW∗HBM
∗ (Uan) ofHBM

∗ (Uan) considered by Deligne
[8] and Gillet-Soulé [21]. Here,U is an arbitrary (possibly singular) quasi-projec-
tive complex variety. This refined map allows one, in particular, to prove that the
Lawson homology and singular homology of smooth, projective toric varieties are
isomorphic. This and other consequences will be worked out in the next section.

We begin with the definition of the weight filtration on HBM
∗ (Uan) for any

quasi-projective complex variety U . This definition is due to Deligne [8] (for
rational coefficients) and to Gillet-Soulé [21] (for arbitrary coefficients). To begin,
one chooses a compactification U ⊂ X of U so that X is a projective, complex
variety, and sets Y to be the reduced closed complement of U in X. As shown in
[21, 1.4], one may construct so-called “hyper-envelopes” X• → X and Y• → Y

such that Xn and Yn are smooth, projective varieties and such that there is a
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(proper) map of simplicial schemes Y• → X• extending the closed immersion
Y → X. A “hyper-envelope” is an augmented simplicial variety X• → X such
that the canonical map from Xn → (coskn−1(X•))n is a proper map that is sur-
jective on F -points for any field F . We will also refer to the map of simplicial
varieties Y• → X• as a “hyper-envelope” of the map Y → X. The existence
of smooth hyper-envelopes follows readily from Hironaka’s resolutions of singu-
larities. Moreover, a hyper-envelope X• → X is precisely the same thing as a
hyper-cover for the proper cdh topology [41, 2.17].

Let Z Sing(−) denote the functor taking a space to the complex of singular
chains (with boundary maps given by alternating sums of face maps). We often
apply Z Sing(−) to the analytic space Xan of a complex variety X, in which case
we simply write Z Sing(X) for Z Sing(Xan). Applying the functor Z Sing(−) to
a simplicial variety X• degree-wise and taking alternating sums of the face maps
of X• results in the bicomplex

· · · → Z Sing(X1)→ Z Sing(X0).

Since Y• → X• is a map of simplicial schemes, we may form the bicomplex

· · · → Z Sing(X2)⊕ Z Sing(Y1)→ Z Sing(X1)⊕ Z Sing(Y0)→ Z Sing(X0)

in the evident manner by taking the cone of the chain map

Z Singn(X•)→ Z Singn(Y•)

for each fixed n. To simplify notation, we set Un = Xn
∐

Yn−1 (with Y−1 = ∅) so
that the above bicomplex becomes

· · · → Z Sing(U1)→ Z Sing(U0). (5.1)

Abusing the notation of Gillet-Soulé a bit, we will call the bicomplex (5.1) the
“singular weight complex” of U . As we show in Proposition 5.2, the homology
of the total complex associated to the singular weight complex of U gives the
Borel-Moore homology of Uan. In Proposition 5.9, it is asserted that this singular
weight complex is independent of the choices made, up to canonical isomorphism
in the derived category.

Recall that Zt(−) is the functor taking a quasi-projective complex variety X
to the topological abelian group of t-dimensional cycles on X (for the exact defi-
nitions, see [10] and [27]). The functor Zt(−) is covariant for proper morphisms
(via push-forward of cycles) and contravariant for open immersions (via restric-
tion of cycles). We let SingZt(−) denote the functor taking a variety U to the
chain complex associated to the simplicial abelian group obtained by applying
Maps(�n

top,−) to Zt(U). The Lawson homology groups are defined from Zt(−)
via the formula

LtHn(X) = πn−2tZt (X) = hn−2t SingZt(X), if t ≥ 0.



Computations in semi-topological K-theory 779

It is convenient to extend this definition by setting

LtHn(X) = L0Hn(X), if t < 0.

(Another common convention is to set LtHn(X) = L0Hn−2t (X × A
−t ) for

t < 0, but the canonical map given by composing flat pullback and the s-map,
L0Hn(X)→ L−tHn−2t (X×A

−t )→ L0Hn−2t (X×A
−t ), is an isomorphism for

all t ≥ 0.)
For a quasi-projective complex variety U , if we choose a compactification X

with reduced complement Y and smooth hyper-envelope Y• → X• of the closed
immersion Y � X, then we can apply SingZt(−) to each Ui = Xi

∐

Yi−1 to
obtain the bicomplex

· · · → SingZt(U1)→ SingZt(U0)

in a parallel fashion to the construction of the singular weight complex of U .

Proposition 5.2. For any quasi-projective variety U , the canonical maps

T ot (· · · → Z Sing(U1)→ Z Sing(U0)) −→ Z Sing(X)/Z Sing(Y )

and

T ot (· · · → SingZt(U1)→ SingZt(U0)) −→ SingZt(U), for t ≥ 0,

are quasi-isomorphisms, where the varieties Un, n ≥ 0, and the maps between
them are constructed as above. Thus we have natural isomorphisms

HBM
n (Uan) ∼= hnT ot (· · · → Z Sing(U1)→ Z Sing(U0))

and

LtHn(U) ∼= hn−2tT ot (· · · → SingZt(U1)→ SingZt(U0)), for t ≥ 0.

Proof. Since Lawson homology satisfies localization, the sequence

SingZt(Y )→ SingZt(X)→ SingZt(U)

is a distinguished triangle, and thus for the assertions involving Lawson homology,
it suffices to prove

SingZt(X•)→ SingZt(X) and SingZt(Y•)→ SingZt(Y )

are quasi-isomorphisms. In fact, we prove SingZt(X•)→ SingZt(X) is a quasi-
isomorphism for any hyper-envelopeX• → X withX a quasi-projective complex
variety. Likewise, for the assertions involving Borel-Moore homology, it suffices
to prove Z Sing(X•)→ Z Sing(X) is a quasi-isomorphism for an arbitrary hyper-
envelope.



780 E. M. Friedlander et al.

Observe that it suffices to show F •(X) → F •(X•) is a quasi-isomorphism
where F • is either Hom(Z Sing•(−),Q/Z) or Hom(Sing• Zt(−),Q/Z). In each
case, F • is a bounded below cochain complex of presheaves of abelian groups
on the category of quasi-projective varieties and proper morphisms. Following
Voevodsky [41], we call such a complex “flasque” for the proper cdh topology
(pcdh topology, for short) provided that

F •(X)→ F •(Z)⊕ F •(X′)→ F •(Z′)

is a distinguished triangle (more precisely, provided that the canonical map from
the cone of F •(X) → F •(Z) ⊕ F •(X′) to F •(Z′) is a quasi-isomorphism), for
every “abstract blow-up”

Z′ −−−→ X′


�



�

Z −−−→ X.

(Recall that an abstract blow-up consists of a proper map X′ → X and a closed
immersionZ ⊂ X such that the induced mapX′−Z′ → X−Z is an isomorphism,
where Z′ denotes the closed subscheme Z ×X X′ of X′.) The presheaves we are
interested in are flasque because Lawson homology and Borel-Moore homology
satisfy localization. We shall prove F •(X)→ F •(X•) is a quasi-isomorphism for
any hyper-envelope X• → X for any F • having these properties.

Let F • → I • be a resolution of F • by a bounded below complex of injective
pcdh sheaves — i.e., F • → I • is locally a quasi-isomorphism for the pcdh topol-
ogy and each I n is injective. The complex I • is also flasque; indeed, this follows
from the fact [40, 2.11 and 2.18] that the sequence of pcdh sheaves

0→ Zpcdh(Z
′)→ Zpcdh(Z)⊕ Zpcdh(X

′)→ Zpcdh(X)→ 0

is exact for each abstract blowupX′ → Xwith centerZ. (Here, Zpcdh(W) denotes
the pcdh sheafification of Z Hom(−,W).)

We claim that F • → I • is globally a quasi-isomorphism, so that F •(V ) →
I •(V ) is a quasi-isomorphism for all quasi-projective varieties V . Indeed, by tak-
ing cones, it suffices to show that a locally acyclic flasque complex G• that is
bounded below is object-wise acyclic. Observe that the presheaf hn−1(G•)(−) is
zero for n small enough. Let x ∈ hn(G•)(V ) for some scheme V . There is an
abstract blowup f : V ′ → V , Z ⊂ V , Z′ = Z ×V V ′ such that f ∗(x) = 0 [15,
3.3]. The element x also vanishes onZ by Noetherian induction, and hence lifts to
an element of hn−1(G•(Z′)), which is the zero group by the inductive hypothesis.

It remains to prove I •(X)→ I •(X•) is a quasi-isomorphism. But this holds
for each fixed I n since X• → X is a hyper-covering for the pcdh topology and
I n is an injective pcdh sheaf. ��
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Using Proposition 5.2, we have that the bicomplex (5.1) induces a spectral
sequence

E2
p,q = hp(· · · → Hq(U

an
1 )→ Hq(U

an
0 )) �⇒ HBM

p+q(U
an). (5.3)

Given an abelian groupA, we may also form the evident analogue with coefficients
in A

E2
p,q = hp(· · · → Hq(U

an
1 , A)→ Hq(U

an
0 , A)) �⇒ HBM

p+q(U
an, A)

by first tensoring (5.1) by A over Z. We will refer to this spectral sequence as the
Deligne-Gillet-Soulé (DGS for short) spectral sequence.

Of course, the isomorphism type of the singular weight complex of a given
variety U depends on the choices made in its construction. However, any two
sets of choices made in constructing this bicomplex result in quasi-isomorphic
complexes. In fact, even more is true: two sets of choices for the construction
of the singular weight complex of a given variety U will result in bicomplex-
es such that the associated spectral sequences are isomorphic (starting at the
E2-term); indeed, [21, Theorem 2] and the fact that the singular homology func-
tor factors through the category of Chow motives implies that the complexes
· · · → Hq(U

an
1 , A) → Hq(U

an
0 , A) are well-defined up to canonical homotopy

equivalence of complexes. In particular, the following definition (made by Gillet
and Soulé for cohomology with compact supports) is independent of all choices
made.

Definition 5.4. [21, Theorem 3] For a quasi-projective complex variety U , the
weight filtration on HBM

∗ (Uan) is the increasing filtration given by the filtration
on the abutment of the DGS spectral sequence. Explicitly, we define

WtH
BM
n (Uan) = image

(

hn
(

Z Sing(Un+t )

→ · · · → Z Sing(U0)
)→ HBM

n (Uan)
)

,

where the Ui’s form the singular weight complex of U . For any abelian group A,
we define

WtH
BM
n (Uan, A)

= image
(

hn
(

Z Sing(Un+t )⊗Z A

→ · · · → Z Sing(U0)⊗Z A
)→ HBM

n (Uan, A)
)

.

The key properties established by Gillet-Soulé for the weight filtrationW∗HBM
∗

are recorded in the following theorem.

Theorem 5.5 (Gillet-Soulé). Let U be a quasi-projective complex variety and A
an abelian group.
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(1) The filtration W∗HBM
∗ (Uan, A) is independent of all the choices made.

(2) If U has dimension d, then the weight filtration on HBM
n (Uan, A) is sup-

ported in the range [−n, d−n] — that is,WtH
BM
n (Uan, A) = 0 for t < −n

and WtH
BM
n (Uan, A) = HBM

n (Uan, A) for t ≥ d − n.
(3) If U is smooth and projective, then HBM

n (Uan, A) = Hn(U
an, A) is of

pure weight −n — that is, WtHn(U
an, A) vanishes for t < −n and equals

Hn(U
an, A) for t ≥ −n.

(4) The weight filtration is functorial for closed immersions: if j : Z ⊂ U

is a closed immersion, then the canonical map j∗ : HBM
∗ (Zan, A) →

HBM
∗ (Uan, A) restricts to a map j∗ : WtH

BM
∗ (Zan, A)→ WtH

BM
∗ (Uan, A)

for all t .
(5) The weight filtration is functorial for open immersions : if i : V � U

is an open immersion, then the canonical map i∗ : HBM
∗ (Uan, A) →

HBM
∗ (V an, A) restricts to a map i∗ : WtH

BM
∗ (Uan, A)→ WtH

BM
∗ (V an, A)

for all t .
(6) The weight filtration is compatible with localization sequences: if j : V �

U is the open complement of a closed immersion j : Z → U , then the
boundary map in the localization sequence for Borel-Moore homology
HBM
∗ (V an, A) → HBM

∗−1 (Z
an, A) restricts to a map WtH

BM
∗ (V an, A) →

WtH
BM
∗−1 (Z

an, A), for all t .

Remark 5.6. We have not asserted that localization sequences for Borel-Moore
homology restrict to give long exact sequences involving the functors WtH

BM
∗ ,

for a fixed t . Indeed, this is not the case in general, and one motivation for intro-
ducing the groups W̃tH

BM
∗ below is to rectify this behavior.

As with any (convergent) spectral sequence, we can describe the filtration on
the abutment using theDr -terms for any r instead of theD1-terms as in Definition
5.4. Specifically, we use theD2-terms which we identify using the following fact
from homological algebra :

Lemma 5.7. Let A be a (bounded above) double (chain) complex. Let trv≥jA
denote the double complex obtained by “good” truncation in the vertical direc-
tion and th≤iA denote the double complex obtained by “brutal” truncation in the
horizontal direction. Write Fv• T ot (A) and Fh• T ot (A) for the the corresponding
filtrations on the total complex associated to A, and let E(v) and E(h) refer to
the corresponding spectral sequences. Then E1(v) and E2(h) are isomorphic as
differential graded modules — that is, the two spectral sequences coincide up to
reindexing.

Using this, we can now give an alternative description of the weight filtration
as follows :

WtH
BM
n (Uan) = image

[

hn(· · · → tr≥−tZSing(U1)

→ tr≥−tZSing(U0))→ HBM
n (Uan)

]

,
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where in general tr≥j denotes the “good truncation” of chain complexes at degree
j . Motivated by this alternative description ofW∗HBM

∗ , we introduce the follow-
ing groups:

Definition 5.8. Given a quasi-projective complex variety U , define

W̃tH
BM
n (U) = hn(· · · → tr≥−tZ Sing(U1)→ tr≥−tZ Sing(U0)).

For any abelian group A, define

W̃tH
BM
n (U,A) = hn(· · · → tr≥−t (Z Sing(U1)⊗Z A)

→ tr≥−t (Z Sing(U0)⊗Z A)).

In other words, the group W̃tHn(U) is the D2
n+t,−t -term of the DGS spectral

sequence. In particular, there is a canonical surjective map

W̃tH
BM
n (U)→ WtH

BM
n (Uan)

given by mappingD2-terms toD∞-terms. In certain cases, this map is an isomor-
phism, but, in general, the W̃tH

BM
∗ are better behaved than the weight filtration

itself.
The following result implies that the groups W̃tH

BM
n are independent of the

choices made up to canonical isomorphism; it is a restatement in our context of
[21, Theorem 2], which asserts the existence and well-definedness of the “motivic
weight complex” functor.

Proposition 5.9. Suppose we have chosen a projective compactification U ⊂ X
for every quasi-projective variety U and a smooth hyper-envelope Y• → X• of
Y � X for every pair (X, Y ) consisting of a projective variety X and a closed
subvariety Y . Fix an integer t and an abelian group A. Then these choices deter-
mine a functor

WCt(−, A) : Varprop/C→ D+(Ab)

from the category of complex quasi-projective varieties and proper morphisms
to the derived category of bounded below chain complexes of abelian groups,
defined by

WCt(U,A) = T ot (· · · → tr≥−t (Z Sing(U1)⊗ZA)→ tr≥−t (Z Sing(U0)⊗ZA)).

Moreover, the assignmentU 	→ WCt(U,A) is contravariantly functorial for open
immersions. Finally, a different set of choices of compactifications and smooth
hyper-envelopes determines a canonically isomorphic functor.

Proof. This is proved exactly as in [21, 2.2 and 2.3]. Observe that all maps given
there for the definition of the functor (in [21], to the homotopy category of com-
plexes of Chow motives Hot(M)) are actually either induced by morphisms of
simplicial varieties or are inverses (in Hot(M)) of maps induced by morphisms
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of simplicial varieties. Observe that any morphism of simplicial varieties induces
a map of their truncated singular complexes, and those morphisms that become
invertible in the category Hot(M) induce quasi-isomorphisms on truncated sin-
gular complexes, since the homology functors Hn on smooth projective varieties
factor through the category of pure effective Chow motives. Thus, the argument
goes through without difficulty. ��
Remark 5.10. Observe that we have W̃tH

BM
n = hn ◦WCt , by definition.

Theorem 5.11. The functors W̃∗HBM
∗ enjoy the following properties for quasi-

projective complex varieties:

(1) The groups W̃∗HBM
∗ are independent of the choices made, up to canonical

isomorphism. Moreover, (having fixed a set of choices as in Proposition 5.9)
there is a natural transformation

W̃tH
BM
n → W̃t+1H

BM
n , for each t, n ∈ Z,

that is an isomorphism if t ≥ 0, and there is a natural isomorphism
W̃0H

BM
n
∼= HBM

n , for each n.
(2) For any quasi-projective complex variety U and abelian group A, there is

a surjective map

W̃tH
BM
n (U,A)→ WtH

BM
n (Uan, A)

which is covariantly functorial for proper morphisms and contravariantly
functorial for open inclusions.

(3) The map W̃tHn(U,A) → WtHn(U
an, A) is an isomorphism for all t, n if

and only if the DGS spectral sequence with coefficients in A degenerates at
E2. In particular, this map is an isomorphism (for any coefficients) if U is a
smooth, projective variety or U is the open complement of a closed immer-
sion of smooth, projective varieties. Moreover, this map is isomorphism for
any U provided A = Q.

(4) Given an open immersion V ⊂ U with closed complement Z there are
functorial long exact localization sequences

· · · → W̃tH
BM
n (Z,A)→ W̃tH

BM
n (U,A)→ W̃tH

BM
n (V,A)→ W̃tH

BM
n−1 (Z,A)→ · · ·

for all t whose maps commute with the natural transformations W̃tH
BM
∗ →

W̃t+1H
BM
∗ and in particular with the maps of the long exact localization

sequence for Borel-Moore homology

· · · → HBM
n (Zan,A)→ HBM

n (Uan,A)→ HBM
n (V an, A)→ HBM

n−1 (Z
an, A)→ · · · .

Proof. We are justified in using the word “functor” by Proposition 5.9, which also
implies the independence of choices up to canonical isomorphism. The natural
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transformations are the obvious ones and the fact that W̃0H
BM ∼= HBM is the

content of Proposition 5.2. This shows (1).
The existence and surjectivity of the map in (2) follows immediately from the

observation that W̃tH
BM
n and WtH

BM
n are the D2- and D∞-terms of the DGS

spectral sequence.
The first assertion of (3) is just the general fact that a spectral sequence degen-

erates at E2 if and only if the natural map D2 → D∞ is an isomorphism. If X
and Z ⊂ X are smooth and projective, then we can choose them to be their own
smooth hyper-envelopes. This implies that in the DGS spectral sequence E2

p,q

vanishes for p �= 0, 1 and thus all differentials vanish. The fact that the spectral
sequence with rational coefficients degenerates for any U has been shown by De-
ligne [8] for cohomology with compact supports; but with rational coefficients,
cohomology and homology are dual to one another by the universal coefficient
theorem, and thus so are these spectral sequences.

Assertion (4) is proven in the same way as [21, Theorem 2, (iii)]. In detail,
choose a compactification X of U and compactify Z by Y = X − V . The result
is a square

Y − Z −−−→ Y


�



�

X − U −−−→ X
of closed embeddings, which can be covered by a square of simplicial smooth
projective varieties such that the maps on vertices are smooth hyper-envelopes.
Applying any of the functors WCt gives a diagram of objects in D+(Ab) of the
form

WCt(Y − Z) −−−→ WCt(Y ) −−−→ WCt(Z)


�



�



�

WCt(X − U) −−−→ WCt(X) −−−→ WCt(U)


�



�



�

WCt(X − (U ∪ Y )) −−−→ WCt(X − Y ) −−−→ WCt(V )

in which the first two columns and the first two rows are distinguished trian-
gles (basically, by definition) and the bottom row is a distinguished triangle since
X − (U ∪ Y ) is empty and X − Y = V ; hence, so is the rightmost column. ��
Theorem 5.12. For any quasi-projective complex varietyU , the map from Lawson
homology to Borel-Moore homology factors as

LtHn(U)→ W̃−2tH
BM
n (U)→ HBM

n (Uan), for all n, t ∈ Z.

Moreover, for t ≥ 0 the first map is given by a map in the derived category of
abelian groups

SingZt(U)[−2t]→ WC−2t (U)
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that is covariantly natural for proper morphisms and contravariantly natural for
open immersions. Thus the map LtH∗(−) → W̃−2tH∗(−) is compatible with
localization long exact sequences.

Proof. Since LtHn = L0Hn and W̃−2tH
BM
n = W̃0H

BM
n = HBM

n for t ≤ 0, we
may assume t ≥ 0. We begin by establishing a chain of natural transformations
joining the functors SingZt(−)[−2t] and tr≥2tZ Sing(−). Let s ∈ Sing2t Z0(A

t )

be a representative for a generator of h2t (SingZ0(A
t )) ∼= Z and let

s : SingZt(U)[−2t]→ SingZt(U × A
t )

be the map induced by external product with the element s. Clearly this map
factors uniquely through a map of the form

s : SingZt(U)[−2t]→ tr≥2t SingZt(U × A
t ).

By [10], the natural map

SingZ0(U)→ SingZt(U × A
t )

given by flat pullback along U × A
t → U is a quasi-isomorphism. Observe that

Z0(U) may be identified with
∐

n Symm
n(Uan)+, the group completion of the

infinite symmetric product of the space Uan and thus we have a map

Z Sing(U)→ SingZ0(U)

which is a quasi-isomorphism by the Dold-Thom Theorem. We therefore have a
natural quasi-isomorphism of the form

Z Sing(U)
∼→SingZt(U × A

t ).

The chain of natural transformations we seek is given by the diagram

SingZt(U)[−2t]
s−−−→ tr≥2t SingZt(U × A

t )
∼←−−− tr≥2tZ Sing(U).

As usual, we choose a compactification X of U with reduced complement Y
and a smooth hyper-envelope Y• → X• of the closed immersion Y � X. Let
Ui = Xi

∐

Yi−1 and apply each of the functors SingZt(−), SingZt(−×A
t ), and

Z Sing(−) to each Ui . Taking appropriate alternating sums of maps, we obtain a
chain of maps of bicomplexes

SingZt(U•)[−2t]
s−−−→ Sing tr≥2tZt (U• × A

t )
∼←−−− tr≥2tZ Sing(U•).

Taking homology groups of the associated total complexes and using Proposition
5.2, we obtain the desired map

LtHn(U)→ W̃−2tH
BM
n (Uan).

It is apparent from the construction that the composition of this map with the map
W̃−2tH

BM
n (Uan)→ HBM

n (Uan) gives the usual map from Lawson homology to
Borel-Moore homology. ��
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Corollary 5.13. For any quasi-projective complex variety U , the image of the
canonical map LtHn(U)→ HBM

n (Uan) lies in the part of weight at most −2t of
Borel-Moore homology.

We close this section by establishing a suitable version of the projective bun-
dle formula for the functors W̃∗HBM

n . Recall that for a chain complex of abelian
groups A, we write A[i] for the chain complex defined by A[i]r = Ar+i .
Theorem 5.14. Let X be a quasi-projective variety and E → X a vector bundle
of rank c+ 1. For any integer t and abelian group A, there is an isomorphism in
the derived category of the form

c
⊕

i=0

WCt+2i (X,A)[−2i] ∼= WCt(P(E),A), (5.15)

and hence there is an isomorphism

c
⊕

i=0

W̃t+2iH
BM
n−2i (X,A)

∼= W̃tH
BM
n (P(E),A). (5.16)

Moreover, the isomorphism (5.16) can be chosen to be compatible with the pro-
jective bundle formulas in Lawson [10] and Borel-Moore homology under the
maps of Theorem 5.12.

Remark 5.17. We have not asserted that there exist isomorphisms as in Theorem
5.14 that are natural with respect to pullback along open immersion or pushfor-
ward along proper morphisms. Presumably such natural isomorphisms exist, but
establishing their existence appears to be a delicate matter.

In order to prove the theorem, we need some auxiliary results and constructions
which might be of independent interest. First, we need the following analogue of
Proposition 5.9.

Proposition 5.18. Suppose we have chosen projective compactifications and
smooth hyper-envelopes of closed immersions of smooth projective varieties as in
Proposition 5.9. For any integer t , natural number r and abelian group A, these
choices determine a functor

WCt,r(−, A) : Varprop/C→ D+(Ab)

from the category of complex quasi-projective varieties and proper morphisms
to the derived category of bounded below chain complexes of abelian groups,
defined by

WCt,r(U,A) = T ot (· · · → tr≥−t (SingZr(U1)⊗Z A)

→ tr≥−t (SingZr(U0)⊗Z A)).
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Moreover, the assignment U 	→ WCt,r(U,A) is contravariantly functorial for
open immersions. Finally, a different set of choices of compactifications and
smooth hyper-envelopes determines a canonically isomorphic functor.

Proof. By [12, 7.2] the Lawson homology functors LrH∗ on smooth projec-
tive varieties are functorial with respect to equidimensional correspondences (via
“correspondence homomorphisms”). Since any d-dimensional cycle on a product
X × Y of smooth projective varieties with dim(X) = d is rationally equivalent
to a cycle finite and surjective over X, we conclude that the Lawson homology
functors LrH∗ on smooth projective varieties factor through the category of pure,
effective Chow motives. The argument of the proof of Proposition 5.9 thus applies
without change to complete the proof. ��

Next, we collect some properties of the functors WCt,r , dropping the coeffi-
cients from the notation.

Proposition 5.19. We have the following natural transformations and natural iso-
morphisms (in the derived category) involving the functors WCt,r .

(1) For each t, r , there is a natural transformation WCt,r → WCt+1,r which
is a natural isomorphism for t ≥ 0.

(2) There is a natural isomorphism of the form WCt
∼=→WCt,0 for each t ∈ Z.

(3) There is a natural isomorphism WC0,r
∼=→SingZr for each r ≥ 0.

(4) There are natural transformations s : WCt,r → WCt−2,r−1[2].When t ≥ 2,
these maps coincide with the usual s-map in Lawson homology under the
isomorphisms of (1) and (3). In general, these maps commute with the nat-
ural transformation of (1).

Proof. Let F be a functor defined on the category of smooth, projective complex
varieties with values in chain complexes of abelian groups such that the functors
hn(F ) on smooth projective varieties factor through pure effective Chow motives
and let F denote the induced functor from Varprop/C to D+(Ab)defined by apply-
ing F degree-wise to smooth hyper-envelopes and then taking total complexes.
(Here, we have implicitly chosen projective compactifications and smooth hyper-
envelopes as in Proposition 5.9.) Thus, ifF = tr≥−t SingZr(−), thenF = WCt,r ;
if F = tr≥−tZ Sing(−), then F = WCt .

Clearly, a natural transformation of such functors F → F ′ induces a natu-
ral transformation of induced functors F → F ′ from Varprop/C to D+(Ab). In
particular, the natural transformations of (1) and (2) are induced by the natural
transformations tr≥−t SingZr(−)→ tr≥−t−1 SingZr(−) and tr≥−tZ Sing(−)→
tr≥−t SingZ0(−) in this manner.

To obtain (4), we choose a representative of a generator of h2(SingZ0(A
1))

(as in the proof of Theorem 5.12) and use exterior product and flat pullback to
define natural transformations

SingZr(−) −−−→ SingZr(−× A
1)[2] ←−−− SingZr−1(−)[2].
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Applying tr≥−t to this chain gives a pair of natural transformations that induce
natural transformations

WCt,r −−−→ F ←−−− WCt−2,r−1[2],

where F is induced by F = tr≥−t SingZr(−×A
1)[2] as above. Since SingZr−1

(−)[2]→ SingZr(−× A
1)[2] is a natural isomorphism, so is WCt−2,r−1[2]→

F , and we define s to be the evident composition. The asserted compatibility
results are evident from the construction.

Finally, assertion (3) is the content of Proposition 5.2. ��

Proof of Theorem 5.14. We first show that we can find a compactification X of
X and a vector bundle EX → X whose restriction to X is E → X. To see this,
let E → X correspond to the locally free coherent sheaf F on X. Now choose
any compactification X′ of X and extend F to a coherent sheaf F ′ on X′. By the
platification par éclatement theorem [31, 5.2], there is a blow-up X of X′ away
from X such that the proper transform F of F ′ is flat and hence locally free. The
locally free sheaf F corresponds to a vector bundle EX → X whose restriction
to X is E→ X.

Let Y = X − X and let EY → Y denote the restriction of EX → X to Y .
Choose a smooth hyper-envelope Y• → X• of Y � X, and let EY• and EX•
denote the evident pullbacks. Taking associated projectivized bundles, we obtain
a commutative square of simplicial varieties

P(EY•) −−−→ P(EX•)


�



�

Y• −−−→ X•

(5.20)

and an augmentation map from this square to the commutative square

P(EY ) −−−→ P(EX)


�



�

Y −−−→ X.

One may readily verify that P(EY•) → P(EX•) is a smooth hyper-envelope of
P(EY ) � P(EX), and hence WCt,r(P(E),A) is isomorphic to the complex ob-
tained by applying tr≥−t SingZr(−) ⊗Z A degree-wise to each of the varieties
comprising P(EY•) and P(EX•) and taking total complexes. In a similar fashion,
the map Y• → X• can be used to define WCt,r(X,A). Moreover, note that the
vertical maps of (5.20) are flat of relative dimension c, and so we obtain the
commutative square
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Zr(Y•) −−−→ Zr+c(P(EY•))


�



�

Zr(X•) −−−→ Zr+c(P(EX•)).

(5.21)

IfW is a smooth, projective variety andL→ W is a line bundle, then we have
natural maps

Zr(W) −−−→ Zr(L)
∼←−−− Zr−1(W),

for all r , given by pushforward along the zero section W � L and flat pullback
alongL→ W . The composition of these maps (in the derived category) gives the
“Chern class operator” induced by the line bundle L on the Lawson homology of
W . LettingW range over the varieties comprising the simplicial varieties P(EY•)
and P(EX•) and letting L range over the canonical line bundles, we obtain for
each i ≥ 0 a commutative diagram of the form

Zr+c−i (P(EY•)) −−−→ Zr+c−i (LY•)
∼←−−− Zr+c−i−1(P(EY•))



�



�



�

Zr+c−i (P(EX•)) −−−→ Zr+c−i (LX•)
∼←−−− Zr+c−i−1(P(EX•))

(5.22)

in which all vertical maps are given by pushforward along proper morphisms.
(Observe that each canonical line bundle is obtained by pullback from the canon-
ical line bundle LX0

.)
Applying tr≥−t Sing(−) degree-wise to the diagrams (5.21) and (5.22) gives

us maps of the form
WCt,r(X)→ WCt,r+c(P(E))

and

WCt,r+c−i (P(E))→ WCt,r+c−i−1(P(E)), for all r + c − 1 ≥ i ≥ 0.

Taking compositions in the evident manner gives us maps of the form

WCt,r(X)→ WCt,r+c−i (P(E)), for all c ≥ i ≥ 0,

which upon composition with sc−i (where s is the map of Proposition 5.19) yields
the map

WCt,r(X)→ WCt−2c+2i,r (P(E))[2c − 2i].

By adding these maps together and reindexing we get the map

c
⊕

i=0

WCt+2i,r (X)[−2i]→ WCt,r(P(E)). (5.23)

When r = 0, this is the map we seek (since WC∗,0 ∼= WC∗ by part (2) of
Proposition 5.19).
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To prove (5.23) is an isomorphism in the derived category for r = 0, observe
that it follows from its construction that this map fits into the commutative diagram
⊕c

i=0 WCt+2i,0(Y )[−2i]−−−−→⊕c
i=0 WCt+2i,0(X)[−2i]−−−−→⊕c

i=0 WCt+2i,0(X)[−2i]


�



�



�

WCt,0(P(EY )) −−−−→ WCt,0(P(EX)) −−−−→ WCt,0(P(E))

(5.24)

whose rows are distinguished triangles, and so it suffices to prove the left-hand and
middle vertical arrows of this diagram are isomorphisms in the derived category.
But these maps are obtained from the collection of maps of the form

⊕c
i=0 SingZ0(W)[−2i]→ SingZ0(P(EW)), (5.25)

for W = Yn or Xm, given by the composition of flat pullback, the Chern class
operators, and the s-map:

⊕c
i=0 SingZ0(W)[−2i] −−−→ SingZ0(P(EW))



�

�



⊕c
i=0 SingZc(P(EW))[−2i] −−−→ ⊕c

i=0 SingZi(P(EW))[−2i].

We claim (5.25) is a quasi-isomorphism for any quasi-projective variety W . In-
deed, since the s map is readily verified to commute with flat pullback and proper
pushforward, the map (5.25) fits into the commutative diagram

⊕c
i=0 Z0(W)[−2i] −−−→ Z0(P(EW))

∼


� ∼



�

⊕c
i=0 Zc(W × A

c)[−2i] −−−→ Zc(P(EW×Ac ))

⊕si


� =



�

⊕c
i=0 Zc−i (W × A

c) −−−→ Zc(P(EW×Ac )),

whose bottom map is the quasi-isomorphism that gives the projective bundle
formula for Lawson homology. The vertical maps in this diagram are also quasi-
isomorphisms, and hence the map (5.25) is a quasi-isomorphism as claimed. It
remains a quasi-isomorphism upon applying tr≥−t , and the left-hand and middle
vertical maps of (5.24) are given by taking total complexes of these quasi-isomor-
phisms. Hence they are isomorphisms (in the derived category).

Finally, to prove the compatibility of the isomorphism (5.16) with the bundle
formulas for Lawson and Borel-Moore homology under the maps of Theorem
5.12, observe that each of the maps used to construct (5.23) commutes with the
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maps given in (1) and (4) of Proposition 5.19. Hence the map (5.23) commutes
with these transformations, and thus we have that

⊕c
i=0WCt+2i,r (X)[−2i] −−−→ WCt,r(P(E))

s



�



�s

⊕c
i=0WCt+2i−2,r−1(X)[−2i + 2] −−−→ WCt−2,r−1(P(E))[2]

and ⊕c
i=0WCt+2i,r (X)[−2i] −−−→ WCt,r(P(E))



�



�

⊕c
i=0WCt+1+2i,r (X)[−2i] −−−→ WCt+1,r (P(E))

commute. This suffices to prove the compatibility of bundle formulas, sinceWCt,r
gives Lawson homology and WCt,0 gives Borel-Moore homology whenever
t ≥ 0. ��

6. Comparing homology, cohomology, and K-theory

In this section, we give some conditions on the morphic cohomology of a vari-
ety that ensure an isomorphism of the semi-topological and topologicalK-theory
of the variety in a certain range (see Theorem 6.1). We then define a class C of
varieties for which the refined cycle maps of Theorem 5.12 are isomorphisms,
verifying that a variety that is both smooth and in C satisfies the conditions of
Theorem 6.1. We provide a number of examples of varieties in C.

Theorem 6.1. Let X be a smooth quasi-projective complex variety X and let A
be an abelian group.

(1) If
LqHn(X,A)→ Hn(Xan,A)

is an isomorphism for n ≤ 2q then the map

Ksst
i (X,A)→ ku−i (Xan, A)

is an isomorphism for i ≥ 0.
(2) If

LqHn(X,A)→ Hn(Xan,A)

is an isomorphism for n ≤ q and a monomorphism for n = q + 1, then the
map

Ksst
i (X,A)→ ku−i (Xan, A)

is an isomorphism for i ≥ dim(X) − 1 and a monomorphism for
i = dim(X)− 2.
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Proof. This follows from Theorem 3.6 in the same way as Theorem 3.7 (which is
just a special case of this theorem). We only give a proof for the second statement,
which is slightly more complicated than the first. Let d denote the dimension of
X and let E(sst) (resp., E(top)) denote the semi-topological (resp., topological)
spectral sequence. Under the given assumptions, we prove the following about
the maps Er(sst)→ Er(top), for all r ≥ 2 :

(1) The mapEp,qr (sst)→ E
p,q
r (top) is an isomorphism provided p+q ≤ 1−d.

(2) The mapEp,qr (sst)→ E
p,q
r (top) is a monomorphism providedp+q ≤ 2−d

Observe that ifp+q ≤ 1−d then eitherp ≤ 0 or q ≤ −d, and ifp+q = 2−d,
then either p ≤ 1 or q ≤ −d. When r = 2, assertion (1) holds for p ≤ 0 and
assertion (2) holds for p ≤ 1 by hypothesis, and both assertions hold for q ≤ −d
by duality. We proceed by induction on r using the commutative diagram

E
p−r,q+r−1
r (sst)

d
p−r,q+r−1
r−−−−−→ E

p,q
r (sst)

d
p,q
r−−−→ E

p+r,q−r+1
r (sst)



�



�



�

E
p−r,q+r−1
r (top)

d
p−r,q+r−1
r−−−−−→ E

p,q
r (top)

d
p,q
r−−−→ E

p+r,q−r+1
r (top),

noting that Ep,qr+1(sst) and Ep,qr+1(sst) are defined as the middle homology groups
of the rows. An easy diagram chase shows that assertions (1) and (2) hold for r+1
provided they hold for r .

Consequently, assertions (1) and (2) hold for E∞-terms as well, and thus the
map Ksst

i (X,A) → ku−i (Xan, A) admits a finite filtration whose quotients are
isomorphisms for i ≥ d − 1 and monomorphisms for i = d − 2. The result
follows. ��

To apply the preceding theorem, we need examples for which the hypotheses
hold. These will be furnished by the methods of the previous section; we therefore
translate the conditions of the theorem to homology.

Corollary 6.2. LetA be an abelian group. AssumeX is a smooth, quasi-projective
complex variety of dimension d such that the generalized cycle map

LtHn(X,A) −→ HBM
n (Xan, A)

is an isomorphism for n ≥ d + t and a monomorphism for n = d + t − 1 (resp.,
an isomorphism for n ≥ 2t). Then the map in K-theory

Ksst
i (X,A)→ ku−i (Xan, A)

is an isomorphism for i ≥ d − 1 and a monomorphism for i = d − 2 (resp., an
isomorphism for i ≥ 0).

Proof. This is a simple restatement of the theorem, using duality [11]. ��
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Theorem 6.3. AssumeX is a smooth quasi-projective variety of dimension d such
that the refined cycle map (Theorem 5.12)

LtHn(X)→ W̃−2tH
BM
n (X)

is an isomorphism for all t, n ∈ Z. Then for any abelian group A, the canonical
map

Ksst
i (X,A)→ ku−i (Xan, A)

is an isomorphism for all i ≥ d − 1 and a monomorphism for i = d − 2. If X is
projective, this map is an isomorphism for all i ≥ 0.

Proof. We have to prove that the conditions of Corollary 6.2 are satisfied. First
of all, if the refined cycle map is an isomorphism for all t and n, then the same is
true with coefficients in any abelian group A. If X happens to be projective, then
the refined weight groups coincide with the usual ones (part (3) of Theorem 5.11)
and the weights are pure (part (3) of Theorem 5.5) so that the generalized cycle
map LtHn(X)→ HBM

n (Xan) is an isomorphism for n ≥ 2t , as needed.
In general, it suffices to prove that each map in the sequence

W̃−2tH
BM
n (X,A)→ W̃−2t+1H

BM
n (X,A)

→ · · · → W̃0H
BM
n (X,A) = HBM

n (Xan, A) (6.4)

is an isomorphism if n ≥ d + t and is a monomorphism if n = d + t − 1. Recall
that W̃−2t+jHBM

n (X,A) is the D2
n−2t+j,2t−j -term of the DGS spectral sequence

and that the above maps are the usual maps betweenD2-terms in an exact couple,
and so we have the exact sequence

E2
n−2t+j+2,2t−j−1 → W̃−2t+jHBM

n (X,A)

→ W̃−2t+j+1H
BM
n (X,A)→ E2

n−2t+j+1,2t−j−1

for each j ≥ 0. It therefore suffices to prove E2
p,q = 0 whenever the inequalities

p+q ≥ d+t and q < 2t hold. Observe that these inequalities imply q > 2d−2p,
and so it suffices to show E2

p,q = 0 whenever q > 2d − 2p. These E2-terms can
be given as

E2
p,q = hp(Hq(Xand , A)→ · · · → Hq(X

an
0 , A))

where Xi is a smooth, projective complex variety of dimension at most d − i
[21, Theorem 2]. Since Hq(Xani , A) = 0 if q > 2d − 2i, we have that E2

p,q = 0
if q > 2d − 2p, as desired. ��
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Motivated by the above theorem, we make the following definition:

Definition 6.5. We define C to be the class of objects X in Sch/C satisfying the
condition that the natural map of (5.12)

LtHn(X)→ W̃−2tH
BM
n (X)

is an isomorphism for all t and n.
Observe that by Theorem 6.3, if X belongs to C, then Ksst

i (X,A) → ku−i

(Xan, A) is an isomorphism for i ≥ dim(X) − 1 and a monomorphism for
i = dim(X)− 2.

Remark 6.6. Since the groups W̃tH
BM
n are always finitely generated, the Lawson

homology of varieties in C is finitely generated. In particular, if X is smooth and
in C then the semi-topological spectral sequence implies that its semi-topological
K-theory is finitely generated in each degree.

We give some initial examples of varieties in this class:

Example 6.7. For any natural number n, the affine space A
n is in C.

Example 6.8. Any smooth projective curve is in C.

Indeed, in both these examples, the weights are pure, so being in C is equiva-
lent to the fact that the generalized cycle map LtHn → HBM

n is an isomorphism
for n ≥ 2t . In the case of affine space, that follows from duality and homotopy
invariance for morphic cohomology, and for curves it is trivial.

The next collection of examples is built of these basic ones using certain con-
structions under which the class C is closed.

Proposition 6.9. The class C is closed under the following constructions.

(1) Closure under localization: Let Z ⊂ X be a closed immersion with Zariski
open complement U = X − Z. Then if two of X, Z, and U belong to C,
then so does the third.

(2) Closure for bundles: For a vector bundle E→ X, the variety X belongs to
C if and only if P(E) does. In this case, E belongs to C as well.

(3) Closure under blow-ups: Let Z ⊂ X be a regular closed immersion and
such that Z belongs to C. Then X is in C if and only if the blow-up XZ of X
along Z is in C.

Proof. Claim (1) follows from Theorem 5.12 and the five lemma.
The first part of (2) follows directly from Theorem 5.14. In this situation, both

P(E ⊕ 1) and P(1) are also in C and thus so is E = P(E ⊕ 1)− P(1) by (1).
To prove (3), note that Z′ = XZ ×X Z → Z is a projectivized vector bundle

(since Z � X is a regular closed immersion) and hence Z′ also belongs to C by
(2). Since XZ − Z′ = X − Z, the result now follows from claim (1). ��
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A large class of varieties that is contained in C is the class of linear varieties
that has been introduced by Jannsen [24] as a class of varieties for which Tate’s
conjecture on algebraic cycles can be proved.

Definition 6.10. The class of linear varieties is the smallest class of quasi-projec-
tive complex varieties satisfying the conditions:

• All affine spaces are linear.
• if X is a quasi-projective complex variety, Z ⊂ X is a closed subscheme,
U = X − Z is the open complement, Z and either U or X are linear, then so
is the remaining member of the triple.

Proposition 6.11. All linear varieties are in C.

Proof. This follows immediately from Example 6.7 and localization. ��
Using different techniques than ours, R. Joshua [25] has proven that if X

is a smooth, projective linear variety, then the motivic cohomology with finite
coefficients (which is equal to morphic cohomology with finite coefficients) ofX
is isomorphic to the singular cohomology with finite coefficients of Xan. Prop-
osition 6.11 thus reproduces and extends Joshua’s result for complex varieties.
(Joshua also considers varieties over an arbitrary algebraically closed field.)

A simple induction argument shows that the Chow groups CH∗(X) of a linear
variety X are finitely generated, and hence that CHt(X) ∼= LtH2t (X), for all
t ≥ 0, since the kernel ofCHt(X)→ LtH2t (X) is divisible. Using Theorem 5.11
(3) and Proposition 6.11, we deduce the following slight improvement of a result
of B. Totaro [38, Theorem 3]. (Note that Totaro’s definition of “linear variety” is
slightly more restrictive than ours.)

Theorem 6.12. For a linear variety X, the natural map induces a rational iso-
morphism

CHt(X)Q ∼= W−2tH
BM
2t (Xan,Q),

for all t ≥ 0.

More generally, the map CHt(X)Q → W−2tH
BM
2t (Xan,Q) is surjective for

any X in the class C, but it usually fails to be injective (for example, it is not
injective for curves).

Example 6.13. The following varieties are examples of linear varieties:

(1) Projective spaces.
(2) More generally, cellular varieties — that is, varietiesX such that there is a chain

of closed immersions ∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xm = X such that Xi −Xi−1

is an affine space for all i = 0, . . . , m. Examples of cellular varieties are flag
varieties.
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(3) Every product G
×n
m of multiplicative groups.

(4) Toric varieties.

The fact that projective cellular varieties are in C has already been shown by
Lima-Filho [28]. The first three of these examples are obviously linear. For the
last one, we use that any toric variety X admits a filtration ∅ = X−1 ⊂ X0 ⊂
· · · ⊂ Xd = X by closed subschemes such that Xi − Xi−1 is a disjoint union of
i-dimensional tori. (Specifically, one takes Xi to be the closure of the i-dimen-
sional orbits — see [20, §3]).

Example 6.14. More generally, ifX is any variety in C, T → X is a principal G
×n
m -

bundle and V is a toric variety with dense orbit G
×n
m , then the “toric fibration”

T ×X V is also in C.

Indeed, this follows from (1) and (2) of Proposition 6.9: Observe that any prin-
cipal torus bundle is locally trivial in the Zariski topology (by Hilbert’s Theorem
90). We argue as in Example 6.13 (4): The toric fibration T ×X V has a filtration
(induced by that of V ) by closed subschemesXi such thatXi −Xi−1 is a disjoint
union of torus bundles (locally trivial in the Zariski topology) overX. This implies
that Xi − Xi−1 is in C, because any torus bundle is the open complement of the
zero section of a vector bundle over X.

For other computations of cohomology and K-theory of toric fibrations, see
[32].

Example 6.15. All schemes of dimension at most 1 are in C.

This follows from (1) of Proposition 6.9, since smooth projective curves and
the point are in C.

Example 6.16. A smooth, quasi-projective complex surface S belongs to C if and
only if it is birationally equivalent to a smooth, projective surface S such that
all elements of H 2(S

an
) are algebraic — i.e., if and only if the injective map

L1H 2(S) → H 2(S
an
) is actually a surjection for some such S. In particular, all

rational surfaces belong to C.

Indeed, by Proposition 6.9 and Example 6.15, S belongs to C if and only if
S does, and as in the proof of Theorem 3.7, computations in Lawson homology
(including especially [12, 9.3]) show that LtHn(S)→ W̃−2tHn(S) is an isomor-
phism except possibly when t = 1 and n = 2, in which case it is injective. (Recall
that W̃−2tHn(S) is Hn(S) for n ≥ 2t and 0 otherwise.)

Observe that most surfaces do not satisfy the condition of Example 6.16.
Indeed, if S is smooth and projective, then in the Hodge decomposition of the
complex cohomology of San

H 2(San,C) = H 2,0(San,C)⊕H 1,1(San,C)⊕H 0,2(San,C),

only H 1,1(San,C) can be algebraic. Thus if San admits a global holomorphic
2-form, then H 2,0(San,C) = H 0(San,�2) �= 0 and hence S does not belong to
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C. For example, if S is a product of two smooth, projective curves having positive
genera, then S /∈ C. However, all smooth surfaces do nevertheless satisfy the
conclusion of Theorem 7.14 below.

The next result is, in some sense, a generalization of the assertion, proven in
[4], that any complex vector bundle on a smooth projective rational three-fold is
algebraic.

Proposition 6.17. Let X be a smooth projective rational three-fold. Then X is in
C.

Proof. By the factorization result of [1], we can factor the birational transforma-
tion X ��� P

3 into a sequence of transformations

X = X0 ��� X1 ��� · · · ��� Xn = P
3

such that each transformation Xi ��� Xi+1 is either a blow-up along a smooth
center or the (rational) inverse of such a blow-up. Since any nontrivial blow-up of
a smooth three-fold along a smooth subvariety has center of dimension at most 1,
Proposition 6.9 (3) and Example 6.15 show that Xi is in C if and only if Xi+1 is
in C, for all i ∈ 0, ..., n− 1. Since P

3 is in C by Example 6.13, we conclude that
X is in C, as claimed. ��

Observe that the proof of Proposition 6.17 shows that belonging to C is a
birational invariant for smooth, projective three-folds.

To conclude, we have now proven the following:

Theorem 6.18. Let X be one of the following complex varieties:

(1) A smooth quasi-projective curve.
(2) A smooth, quasi-projective surface having a smooth compactification with

all of H 2 algebraic.
(3) A smooth projective rational three-fold.
(4) A smooth quasi-projective linear variety (e.g., a smooth quasi-projective

toric variety).
(5) A smooth toric fibration over one of the above.

Then for any abelian group A the natural map Ksst
n (X,A) → ku−n(Xan, A) is

an isomorphism for n ≥ dim(X)− 1 and a monomorphism for n = dim(X)− 2.
If X is projective, this map is an isomorphism for all n ≥ 0.

For four-folds, we can prove the following result:

Proposition 6.19. Let X be a smooth projective rational four-fold. Then for any
abelian groupA the natural mapKsst

n (X,A)→ ku−n(Xan, A) is an isomorphism
for n ≥ 1 and a monomorphism for n = 0.
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Proof. Thomason’s computation of the K-theory of a blow-up with regularly
embedded center (cf. [36]) in the form of Gillet-Soulé (cf. [21, Theorem 5])
implies that for any regular embedding Y → X of Noetherian schemes, the
square of spectra

K(Y ′) ←−−− K(X′)
�



�



K(Y ) ←−−− K(X)
is naturally split homotopy cartesian, where X′ is the blow-up of X along Y and
Y ′ is the exceptional divisor of that blow-up; here “split” means that there is a
section K(Y ′) → K(Y ) of the pull-back map. Consequently, the corresponding
diagram for singular semi-topological K-theory

Ksst (Y ′) ←−−− Ksst (X′)
�



�



Ksst (Y ) ←−−− Ksst (X)

will also be split homotopy cartesian. That is, there are natural isomorphisms

Ksst
n (X′) ∼= Ksst

n (X)⊕
c−1
⊕

i=1

Ksst
n (Y ) (6.20)

for any n ≥ 0, with c the codimension of the embedding. On the other hand,
excision shows that the same is true for topological K-theory.

Assume Y and X are smooth varieties and dim(Y ) ≤ 2. Using Theorem
3.7 and Example 6.15, we conclude that Ksst

n (X) → ku−n(Xan) is an isomor-
phism for n ≥ 1 and a monomorphism for n = 0 if and only if the same holds
for Ksst

n (X′) → ku−n(X′an). Now let X be a smooth rational projective four-
fold. The birational transformation X ��� P

4 can be factored into a sequence of
blowings-up and blowings-down with smooth centers (cf. [1]) which will be of
dimension at most 2; consequently Example 6.13 (1) implies our assertion. ��

7. Conjectures in morphic cohomology and K-theory

In this section, we state semi-topological analogues of the usual conjectures relat-
ing motivic cohomology, étale cohomology, algebraic K-theory, and topological
K-theory, and we explain the connections between such conjectures. Contrary to
the algebraic conjectures, which are about cohomology or K-theory with finite
coefficients, these conjectures are integral. The main result of this section is
Theorem 7.3 which allows us to state the morphic cohomology analogue of the
Beilinson-Lichtenbaum conjecture as suggested by A. Suslin.
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Let π : (Sch/C)et → (Sch/C)Zar be the morphism of sites from the étale site
to the Zariski site. For any q ≥ 0, let Z/m(q) denote the weight qmotivic complex
with Z/m coefficients, defined for example in [35], so that we have the identity

Hn
M(X,Z/m(q)) = Hn

Zar(X,Z/m(q)).

As shown in [35], for any positive integer m, there is a canonical map

Z/m(q)→ tr≤qRπ∗Z/m (7.1)

of complexes of sheaves on (Sch/C)Zar from the motivic complex to the good
truncation of the total right derived functor of π∗ applied to the constant sheaf
Z/m on (Sch/C)et . The Beilinson-Lichtenbaum conjecture (for complex vari-
eties) asserts that the homomorphism (7.1) is a quasi-isomorphism for smooth,
quasi-projective complex varieties.

Since it is known thatHn
M(−,Z/m(q)) vanishes locally for the Zariski topol-

ogy if n > q, the Beilinson-Lichtenbaum Conjecture is equivalent to the assertion
that, for any smooth, quasi-projective complex variety X and integer m ≥ 1, the
canonical map

Hn
M(X,Z/m(q))→ Hn

et (X,Z/m)

is an isomorphism forn ≤ q and a monomorphism forn = q+1. Since étale coho-
mology and singular cohomology agree for finite coefficients, this statement is in
turn equivalent to the assertion that

Hn
M(X,Z/m(q))→ Hn(Xan,Z/m) (7.2)

is an isomorphism for n ≤ q and a monomorphism for n = q + 1. This refor-
mulation of the Beilinson-Lichtenbaum Conjecture has the advantage that it can
be verified on a case-by-case basis for certain varieties. Therefore we say that the
Beilinson-Lichtenbaum Conjecture holds for a smooth variety X if the map (7.2)
is an isomorphism for n ≤ q and a monomorphism for n = q + 1.

In order to state Conjecture 7.8 (the semi-topological analogue of the Beilinson-
Lichtenbaum conjecture), we first need to prove the existence of the corresponding
homomorphism of complexes of sheaves analogous to the homomorphism (7.1).

Recall that the weight t morphic cohomology of a complex variety can be
given as the hypercohomology (in the Zariski topology) of the complex of abelian
sheaves

Z(q)sst = Hom(−×�•top, C0(P
q))+/Hom(−×�•top, C0(P

q−1))+[−2q],

whereC0(P
q) is the infinite disjoint union of of quasi-projective varieties parame-

terizing effective zero cycles on P
q . That is,C0(P

q) =∐n Symm
n(Pq), and from

this we deduce the existence of a map of sheaves on CW

ε∗Z(q)sst → Maps(−×�•top, (
∐

n

Symm(S2q))+)[−2q].
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(see Notation 2.2 for the meaning of CW and ε). The Dold-Thom Theorem
shows that (

∐

n Symm
n(S2q))+ is a K(Z, 2q) and thus we obtain a canonical

map ε∗Z(q)sst → Z. By adjointness, we obtain the map

Z(q)sst → Rε∗Z.

of complexes of sheaves on (Sch/C)Zar .

Theorem 7.3. The complex of sheaves Z(q)sst on Sm/C has no cohomology in
degrees greater than q, so that the canonical map tr≤qZ(q)sst → Z(q)sst is
a quasi-isomorphism. Consequently, the map Z(q)sst → Rε∗Z factors in the
derived category as

Z(q)sst → tr≤qRε∗Z (7.4)

followed by the canonical map tr≤qRε∗Z→ Rε∗Z.
More generally, for any abelian groupA, the complexA(q)sst = Z(q)sst⊗ZA

has no cohomology in degrees greater than q so that we have an induced map in
the derived category

A(q)sst → tr≤qRε∗A. (7.5)

Proof. We need to prove the presheafLqHn(−;A)vanishes locally on any smooth,
quasi-projective complex variety for all n > q. It suffices to prove the result
when A is finitely generated, and so we may take A = Z/m or A = Z. This
result is known when A = Z/m for any positive integer m, since in this case
LqHn(−;Z/m) is naturally isomorphic toHn

M(−;Z/m(q)). For the caseA = Z,
a torsion element of LqHn(X,Z), for a smooth variety X, must vanish locally
if n > q + 1. If n = q + 1, then a torsion element α of LqHq+1(X,Z) lifts
(locally onX) to a class inLqHq(X,Z/m) ∼= Hq

M(X,Z/m(q)) for somem > 0.
Since Hq

M(−,Z(q)) → H
q

M(−,Z/m(q)) is locally surjective (due to the local
vanishing of Hq+1

M (−,Z(q))), so is LqHq(−,Z)→ LqHq(−,Z/m). It follows
that α is locally trivial. Consequently, it remains to prove the result in the case
A = Q.

Since the presheaf LqHn(−;Q) is a pre-theory, it suffices by [39] to prove
LqHn(−;Q) vanishes for n > q at the generic point on any smooth, connected,
quasi-projective complex variety X. By using duality for Lawson homology and
morphic cohomology, it suffices to prove LtHm(−;Q) vanishes at the generic
point of X for m < t + d, where d = dim(X). By choosing a smooth, pro-
jective compactification of X, we may assume X is projective. Recall that we
have LtHm(X;Q) = πm−2t (Zt (X),Q) where Zt(X) denotes the space of t-
dimensional algebraic cycles on X and for any open subvariety U of X with
closed complementY , we haveLtHm(U ;Q) = πm−2t (Zt (U),Q)whereZt(U) =
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Zt(X)/Zt(Y ). We claim that to prove the vanishing of LtHm(−;Q) near the
generic point of X for m < t + d, it suffices to show the canonical map

lim−→
Y⊂X

Hn(Zt(Y ))→ Hn(Zt(X)) (7.6)

is an isomorphism for n < d − t − 1 and surjective for n = d − t − 1, where Y
ranges over all closed subschemes of X of codimension one. For suppose (7.6)
were an isomorphism for n < d − t − 1 and surjective for n = d − t − 1.
Since Zt(X) and Zt(Y ), for each Y , are topological abelian groups, the rational
Hurewicz homomorphisms are injective, and thus

0→ lim−→πn(Zt(Y ),Q)→ πn(Zt(X),Q)→ lim−→πn(Zt(X)/Zt(Y ),Q)→ 0

would be a short exact sequence for n < d − t . Since

lim−→
Y

πn(Zt(X)/Zt(Y ),Q)→ lim−→
Y

Hn(Zt(X)/Zt(Y );Q)

is also injective and the map Hn(Zt(X),Q)→ lim−→
Y

Hn(Zt(X)/Zt(Y );Q) factors

through lim−→ YHn(Zt(X), Zt(Y );Q), the map

πn(Zt(X),Q)→ lim−→
Y

πn(Zt(X)/Zt(Y ),Q)

would be the zero map, and hence

lim−→
Y

πn(Zt(X)/Zt(Y ),Q) = lim−→
Y

LtHn+2t (X − Y,Q)

would vanish for n < d − t .
It remains to prove (7.6) is an isomorphism for n < d − t − 1 and surjective

for n = d − t − 1. Since Zt(X) is the homotopy theoretic group completion of
Ct(X) =

∐

e Ct,e(X) (where Ct,e(X) denotes the projective variety parameter-
izing effective cycles of dimension t and degree e) we have that the homology
of Zt(X) is obtained from the homology of Ct(X) by inverting the action of the
abelian monoid π0Ct(X). Similarly, the group lim−→ YHn(Zt(Y )) is obtained from
lim−→ YHn(Ct(Y )) by inverting the action of lim−→ Yπ0Ct(Y ). Since the map

lim−→
Y

π0Ct(Y )→ π0Ct(X)

will be an isomorphism provided the analogous map of H0 groups is, we see that
it suffices to prove

lim−→
Y

Hn(Ct,e(Y ))→ Hn(Ct,e(X)) (7.7)
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is an isomorphism for n < d − t − 1 (resp., an epimorphism for n = d − t − 1),
for all e ≥ 0.

To establish that (7.7) is an isomorphism for n < d− t−1 (resp., epimorphism
for n = d− t−1), we will use the singular Lefschetz theorem of [2], which states
that given a (possibly singular) projective variety P , the map Hn(W)→ Hn(P )

is an isomorphism (resp., epimorphism) ifW = H1∩ · · ·∩Hj ⊂ P is a complete
intersection of dimension at least n+ 1 (resp., of dimension at least n), whereH1

is a hypersurface of P containing the singular locus of P , and, for all i ≥ 2,Hi is
a hypersurface inH1∩· · ·∩Hi−1 containing the singular locus ofH1∩· · ·∩Hi−1.

Assume n < d − t . Let I ⊂ Ct,e(X) × X be the incidence variety such that
the reduced fiber of I → Ct,e(X) over an effective t-cycle Z is |Z|, the support
of the effective cycle Z. In particular, I → Ct,e(X) is equidimensional of relative
dimension t . Given a class a ∈ Hn(Ct,e(X)), by the singular Lefschetz theorem,
there is a reduced closed subschemeW ⊂ Ct,e(X) of dimension n such that a lifts
toHn(W). Define the “support” ofW to be supp(W) = π2(π

−1
1 (W)), where π1 :

I → Ct,e(X) and π2 : I → X are the evident projection maps. Since π1 is equi-
dimensional of relative dimension t , we have that supp(W) is a closed subscheme
of X having dimension at most n + t < d. Observe that W ⊂ Ct,e(supp(W)),
and so a lifts to Hn(Ct,e(supp(W)) and hence to lim−→ YHn(Ct,e(Y )) as desired.

Now assume that n < d − t − 1. To prove that (7.7) is injective, suppose
a ∈ Hn(Ct,e(Y )) maps to 0 in Hn(Ct,e(X)), where Y is a proper closed sub-
scheme ofX. It suffices to show there is another proper closed subscheme Y ′ with
Y ⊂ Y ′ ⊂ X such that amaps to 0 inHn(Ct,e(Y ′)). By the weak Lefschetz applied
toCt,e(Y ), there is a complete intersectionW ⊂ Ct,e(Y ) having dimension at most
n + 1 such that Hn(W) → Hn(Ct,e(Y )) is an isomorphism. Since Ct,e(Y ) is a
closed subscheme of Ct,e(X), we can find a complete intersection W ′ ⊂ Ct,e(X)
such thatW ⊂ W ′, dim(W ′) = n+1, andHn(W ′)→ Hn(Cr,e(X)) is an isomor-
phism. (Specifically, formW ′ = H1 ∩ · · · ∩Hj by takingHi to be a hypersurface
of H1 ∩ · · · ∩ Hi−1 containing both the singular locus and W .) In particular, the
image of aW in Hn(W ′) vanishes. Finally, let W ′′ = W ′ ∪ Ct,e(Y ). Observe that
supp(W ′′) = supp(W ′) ∪ supp(Ct,e(Y )) = supp(W ′) ∪ Y is a closed sub-
scheme of X that contains Y and has dimension at most t + n + 1 < d. We set
Y ′ = supp(W ′′). Then the image of a in Hn(Ct,e(Y ′)) vanishes, since Ct,e(Y ′)
clearly contains W ′′ and hence W ′. ��

The following conjecture is due to A. Suslin:

Conjecture 7.8 (Suslin’s Conjecture). The map (7.4) is a quasi-isomorphism
after restricting it to smooth varieties, and hence for any smooth, quasi-projective
complex variety X, it induces an isomorphism

LqHn(X) = Hn
Zar(X,Z

sst (q)) ∼= Hn
Zar(X, tr≤qRε∗Z).
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More generally, for any abelian group A, the map (7.5) induces an isomorphism

LqHn(X,A) ∼= Hn
Zar(X, tr≤qRε∗A),

for all such X.

As before, it is useful to establish an equivalent formulation of Suslin’s
Conjecture that allows for verification on a case-by-case basis.

Proposition 7.9. Suslin’s Conjecture with coefficients in A is equivalent to the
assertion that, for any smooth, quasi-projective complex varietyX, the canonical
map

LqHn(X,A)→ Hn(Xan,A) (7.10)

is an isomorphism for n ≤ q and a monomorphism for n = q + 1.

Proof. The fact that Suslin’s Conjecture implies such isomorphisms and mono-
morphisms is obvious. Conversely, assume that for all smooth, quasi-projective
varieties X, the map LqHn(X,A)→ Hn(Xan,A) is an isomorphism for n ≤ q.
Then, in particular, such an isomorphism holds locally on any smooth, quasi-
projective variety X, and so the natural map tr≤qA(q)sst → tr≤qRε∗A is a
quasi-isomorphism of complexes of Zariski sheaves. Now Suslin’s Conjecture
follows from Theorem 7.3. ��
Remark 7.11.

(1) Similar to the Beilinson-Lichtenbaum Conjecture, we say that Suslin’s Con-
jecture (with coefficients in A) holds for a smooth variety X if the map 7.10
is an isomorphism for n ≤ q and a monomorphism for n = q + 1.

(2) Observe that Suslin’s Conjecture implies the vanishing of LtHn(X) for all
smooth varietiesX whenever n < 0 (equivalently, the vanishing of LsHm(X)
for m > 2 dim(X)). For smooth varieties of dimension ≥ 3, such vanishing
(conjectured in [13] and closely related to the Beilinson-Soule vanishing con-
jecture [5]) is known only for very special varieties such as those of Theorem
6.17. For example, such vanishing is not even known for the product of three
elliptic curves.

Recall that the Quillen-Lichtenbaum Conjecture for complex varieties asserts
the following: For a smooth, quasi-projective complex variety X and integer
m ≥ 1, the canonical map

Kn(X,Z/m)→ ku−n(Xan,Z/m) (7.12)

is an isomorphism for n ≥ dim(X)−1 and a monomorphism for n = dim(X)−2.
The semi-topological analogue of the Quillen-Lichtenbaum conjecture involves
integral coefficients:
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Conjecture 7.13 (Semi-topological Quillen-Lichtenbaum). For a smooth, quasi-
projective complex variety X the canonical map

Ksst
n (X)→ ku−n(Xan)

is an isomorphism for n ≥ dim(X)−1 and a monomorphism for n = dim(X)−2.
More generally, such an isomorphism holds in the given range with coefficients
in any abelian group A.

Theorem 7.14. The Beilinson-Lichtenbaum, Suslin, Quillen-Lichtenbaum, and
semi-topological Quillen-Lichtenbaum Conjectures hold for the following com-
plex varieties:

(1) smooth quasi-projective curves,
(2) smooth quasi-projective surfaces,
(3) smooth projective rational three-folds,
(4) smooth quasi-projective toric varieties,
(5) smooth toric fibrations over varieties of type (1), (3), and (4) and over

smooth, quasi-projective surfaces having smooth compactifications with all
of H 2 algebraic.

Proof. That these varieties satisfy the semi-topological Quillen-Lichtenbaum Con-
jecture (with arbitrary coefficients) follows from Theorem 6.18 and Theorem 3.7.
The proof of Theorem 6.3 shows that a variety X in C satisfies the condition that
LtHn(X,A) → HBM

n (X,A) is an isomorphism for n ≥ d + t and a monomor-
phism for n = d + t − 1, for any abelian group A. When X is smooth and in C,
duality then implies that Suslin’s Conjecture holds for X with coefficients in A.
The proof of Theorem 3.7 shows that smooth, quasi-projective surfaces satisfy
Suslin’s Conjecture. Finally, the classical Quillen-Lichtenbaum Conjecture (resp.,
the Beilinson-Lichtenbaum Conjecture) holds for these varieties, since semi-topo-
logical K-theory (resp., morphic cohomology) with finite coefficients coincides
with algebraic K-theory (resp., motivic cohomology). ��
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